Publications

Export 305 results:
Author Keyword Title Type [ Year(Asc)]
2019
Srinivasan, S., Farnadi, G., Babaki, B. & Getoor, L. Lifted Hinge-Loss Markov Random Field. 33rd AAAI Conference on Artificial Intelligence (2019).
2018
Embar, V., Farnadi, G., Pujara, J. & Getoor, L. Aligning Product Categories using Anchor Products. First Workshop on Knowledge Base Construction, Reasoning and Mining (2018). (577.65 KB)
Chang, J., Chen, R., Pujara, J. & Getoor, L. Clustering System Data using Aggregate Measures. SysML (2018). (299.32 KB)
Kouki, P., Pujra, J., Marcum, C., Koehly, L. & Getoor, L. Collective Entity Resolution in Multi-Relational Familial Networks. Knowledge and Information Systems (KAIS) (2018).
Augustine, E. & Getoor, L. A Comparison of Bottom-Up Approaches to Grounding for Templated Markov Random Fields. SysML (2018). at <https://github.com/eriq-augustine/grounding-experiments> (624.33 KB)
Sridhar, D., Springer, A., Hollis, V., Whittaker, S. & Getoor, L. Estimating Causal Effects of Exercise from Mood Logging Data. ICML Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (2018). (333.69 KB)
Farnadi, G., Babaki, B. & Getoor, L. Fairness in Relational Domains. AAAI/ACM Conference on AI, Ethics, and Society (2018). (418.24 KB)
Farnadi, G., Kouki, P., Thompson, S. K., Srinivasan, S. & Getoor, L. A Fairness-aware Hybrid Recommender System. The 2nd FATREC Workshop on Responsible Recommendation (2018). (474.04 KB)
Farnadi, G., Babaki, B. & Getoor, L. Fairness-aware Relational Learning and Inference. Third International Workshop on Declarative Learning Based Programming (DeLBP) at thirty-second AAAI conference on Artificial Intelligence (2018). (169.37 KB)
Tomkins, S., Farnadi, G., Amantullah, B., Getoor, L. & Minton, S. The Impact of Environmental Stressors on Human Trafficking. Beyond Online Data (ICWSM Workshop) (2018). (473.58 KB)
Tomkins, S., Farnadi, G., Amantullah, B., Getoor, L. & Minton, S. The Impact of Environmental Stressors on Human Trafficking. International Conference on Data Mining (ICDM) (2018). (473.58 KB)
Augustine, E. & Farnadi, G. MLTrain: Collective Reasoning With Probabilistic Soft Logic. (2018). at <https://github.com/linqs/psl-examples/tree/uai18> (8.93 MB)
Kouki, P. Resolution, Recommendation, and Explanation in Richly Structured Social Networks. Technology and Information Management Ph.D. Thesis, (2018).
Sridhar, D., Pujara, J. & Getoor, L. Scalable Probabilistic Causal Structure Discovery. International Joint Conference on Artificial Intelligence (2018). at <https://bitbucket.org/linqs/causpsl/src/master/> (281.32 KB)
Embar, V., Sridhar, D., Farnadi, G. & Getoor, L. Scalable Structure Learning for Probabilistic Soft Logic. Workshop on Statistical Relational AI (2018). (400.23 KB)
Tomkins, S., Getoor, L., Chen, Y. & Zhang, Y. A Socio-linguistic Model for Cyberbullying Detection. International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2018). (299.34 KB)
Zhang, Y., Ramesh, A., Golbeck, J., Sridhar, D. & Getoor, L. A Structured Approach to Understanding Recovery and Relapse in AA. The Web Conference (WWW) (2018). at <https://github.com/yzhan202/zhang-www18-experiments> (800.66 KB)
Tomkins, S., Isley, S., London, B. & Getoor, L. Sustainability at Scale: Bridging the Intention-Behavior Gap with Sustainable Recommendations. Recommender Systems (RecSys) (2018). (655.92 KB)
Ramesh, A. & Getoor, L. Understanding Evolution of Long-running MOOCs. International Conference on Web Information Systems Engineering (WISE) (2018).
2017
Kouki, P., Pujara, J., Marcum, C., Koehly, L. & Getoor, L. Collective Entity Resolution in Familial Networks. IEEE International Conference on Data Mining (ICDM) (2017). at <https://github.com/pkouki/icdm2017> (653.4 KB)
Kimmig, A., Memory, A., Miller, R. & Getoor, L. A Collective, Probabilistic Approach to Schema Mapping. International Conference on Data Engineering (ICDE) (2017). at <https://github.com/alexmemory/kimmig-icde17/wiki> (463.69 KB)
Tomkins, S., Getoor, L., Chen, Y. & Zhang, Y. Detecting Cyber-bullying from Sparse Data and Inconsistent Labels. Learning with Limited Labeled Data (LLD) NIPS Workshop (2017). (286.95 KB)
Tomkins, S., Pujara, J. & Getoor, L. Disambiguating Energy Disaggregation: A Collective Probabilistic Approach. International Joint Conference on Artifi cial Intelligence (2017). (373.28 KB)
Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. Journal of Machine Learning Research (JMLR) 18, 1-67 (2017). (731.56 KB)
Ramesh, A., Rodriguez, M. & Getoor, L. Multi-relational influence models for online professional networks. International Conference on Web Intelligence (ICWI) 291-298 (ACM, 2017). (761.17 KB)
Kim, S., Kini, N., Pujara, J., Koh, E. & Getoor, L. Probabilistic Visitor Stitching on Cross-Device Web Logs. International Conference on World Wide Web (WWW) 1581–1589 (2017). (1.23 MB)
Farnadi, G., Bach, S. H., Moens, M. - F., Getoor, L. & De Cock, M. Soft quantification in statistical relational learning. Machine Learning Journal (2017). (1.24 MB)
Pujara, J., Augustine, E. & Getoor, L. Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short. Conference on Empirical Methods in Natural Language Processing (EMNLP) (2017). at <https://github.com/eriq-augustine/meta-kg> (677.74 KB)
Kouki, P., Schaffer, J., Pujara, J., ODonovan, J. & Getoor, L. User Preferences for Hybrid Explanations. 11th ACM Conference on Recommender Systems (RecSys) (2017). (2.64 MB)
Sridhar, D., Pujara, J. & Getoor, L. Using Noisy Extractions to Discover Causal Knowledge. NIPS Workshop on Automated Knowledge Base Construction (2017). (203.34 KB)
2016
Fakhraei, S., Sridhar, D., Pujara, J. & Getoor, L. Adaptive Neighborhood Graph Construction for Inference in Multi-Relational Networks. 12th International SIGKDD Workshop on Mining and Learning with Graphs (MLG) (ACM SIGKDD, 2016). (711.26 KB)
Muthiah, S. et al. Capturing Planned Protests from Open Source Indicators. AI Magazine 37, 63–75 (2016). (1.23 MB)
Kouki, P., Marcum, C., Koehly, L. & Getoor, L. Entity Resolution in Familial Networks. 12th International Workshop on Mining and Learning with Graphs (2016). (633.08 KB)
Rekatsinas, T. et al. Forecasting Rare Disease Outbreaks from Open Source Indicators. Statistical Analysis and Data Mining: The ASA Data Science Journal (2016). (303.08 KB)
Pujara, J. & Getoor, L. Generic Statistical Relational Entity Resolution in Knowledge Graphs. Sixth International Workshop on Statistical Relational AI (IJCAI 2016, 2016). (151.37 KB)
Sridhar, D. & Getoor, L. Joint Probabilistic Inference of Causal Structure. 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining Workshop on Causal Discovery (2016). (204.51 KB)
Tomkins, S., Ramesh, A. & Getoor, L. Predicting Post-Test Performance from Online Student Behavior: A High School MOOC Case Study. International Conference on Educational Data Mining (EDM) (2016). (619.77 KB)
Sridhar, D., Fakhraei, S. & Getoor, L. A Probabilistic Approach for Collective Similarity-based Drug-Drug Interaction Prediction. Bioinformatics (2016). (1.94 MB)
Ramesh, A. A Probabilistic Approach to Modeling Socio-Behavioral Interactions. (2016). (865.41 KB)
Sridhar, D. & Getoor, L. Probabilistic Inference for Causal Structure Discovery. Uncertainty in Artificial Intelligence (UAI) Workshop on Causation (2016). (118.31 KB)
Pujara, J. Probabilistic Models for Scalable Knowledge Graph Construction. (2016). (1.06 MB)
Rekatsinas, T., Deshpande, A., Dong, X. Luna, Getoor, L. & Srivastava, D. SourceSight: Enabling Effective Source Selection. ACM SIGMOD Conference (2016). (799.94 KB)
London, B., Huang, B. & Getoor, L. Stability and Generalization in Structured Prediction. Journal of Machine Learning Research 17, (2016). (532.8 KB)
Kumar, S. et al. Unsupervised Models for Predicting Strategic Relations between Organizations. IEEE ACM International Conference on Advances in Social Networks Analysis and Mining (IEEE, 2016). (212.61 KB)
2015
London, B., Huang, B. & Getoor, L. The Benefits of Learning with Strongly Convex Approximate Inference. International Conference on Machine Learning (ICML) (2015). (788.06 KB)
Pujara, J., London, B. & Getoor, L. Budgeted Online Collective Inference. Uncertainty in Artificial Intelligence (2015). (302.63 KB)
Namata, G. Mark, London, B. & Getoor, L. Collective Graph Identification. ACM Transactions on Knowledge Discovery from Data 10, 25:1–25:36 (2015). (500.96 KB)
Fakhraei, S., Foulds, J., Shashanka, M. & Getoor, L. Collective Spammer Detection in Evolving Multi-Relational Social Networks. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (ACM, 2015). (573.89 KB)
Fakhraei, S., Onukwugha, E. & Getoor, L. Healthcare Data Analytics (Reddy, C. C. Aggarwa) (CRC Press, 2015). (234.2 KB)
Rekatsinas, T., Dong, X. Luna, Getoor, L. & Srivastava, D. Finding Quality in Quantity: The Challenge of Discovering Valuable Sources for Integration. 7th Biennial Conference on Innovative Data Systems Research (CIDR `15) (2015). (396.99 KB)

Pages