@conference {334, title = {The Impact of Environmental Stressors on Human Trafficking}, booktitle = {ICWSM Workshop on Beyond Online Data (BOD)}, year = {2018}, abstract = {

Severe environmental events have extreme effects on all segments of society, including criminal activity. Extreme weather events, such as tropical storms, fires, and floods create instability in communities, and can be exploited by criminal organizations. Here we investigate the potential impact of catastrophic storms on the criminal activity of human trafficking. We propose three theories of how these catastrophic storms might impact trafficking and provide evidence for each. Researching human trafficking is made difficult by its illicit nature and the obscurity of high-quality data. Here, we analyze online advertisements for services which can be collected at scale and provide insights into traffickers{\textquoteright} behavior. To successfully combine relevant heterogenous sources of information, as well as spatial and temporal structure, we propose a collective, probabilistic approach. We implement this approach with Probabilistic Soft Logic, a probabilistic programming framework which can flexibly model relational structure and for which inference of future locations is highly efficient. Furthermore, this framework can be used to model hidden structure, such as latent links between locations. Our proposed approach can model and predict how traffickers move. In addition, we propose a model which learns connections between locations. This model is then adapted to have knowledge of environmental events, and we demonstrate that incorporating knowledge of environmental events can improve prediction of future locations. While we have validated our models on the impact of severe weather on human trafficking, we believe our models can be generalized to a variety of other settings in which environmental events impact human behavior.

}, author = {Tomkins, Sabina and Golnoosh Farnadi and Brian Amantullah and Lise Getoor and Steven Minton} } @conference {338, title = {The Impact of Environmental Stressors on Human Trafficking}, booktitle = {International Conference on Data Mining (ICDM)}, year = {2018}, abstract = {

{\textemdash}Severe environmental events have extreme effects on all segments of society, including criminal activity. Extreme weather events, such as tropical storms, fires, and floods create instability in communities, and can be exploited by criminal organizations. Here we investigate the potential impact of catastrophic storms on the criminal activity of human trafficking. We propose three theories of how these catastrophic storms might impact trafficking and provide evidence for each. Researching human trafficking is made difficult by its illicit nature and the obscurity of high-quality data. Here, we analyze online advertisements for services which can be collected at scale and provide insights into traffickers{\textquoteright} behavior. To successfully combine relevant heterogenous sources of information, as well as spatial and temporal structure, we propose a collective, probabilistic approach. We implement this approach with Probabilistic Soft Logic, a probabilistic programming framework which can flexibly model relational structure and for which inference of future locations is highly efficient. Furthermore, this framework can be used to model hidden structure, such as latent links between locations. Our proposed approach can model and predict how traffickers move. In addition, we propose a model which learns connections between locations. This model is then adapted to have knowledge of environmental events, and we demonstrate that incorporating knowledge of environmental events can improve prediction of future locations. While we have validated our models on the impact of severe weather on human trafficking, we believe our models can be generalized to a variety of other settings in which environmental events impact human behavior

}, author = {Tomkins, Sabina and Golnoosh Farnadi and Brian Amantullah and Lise Getoor and Steven Minton} }