Publications

Export 9 results:
Author [ Title(Desc)] Year
Filters: First Letter Of Title is R and Author is Lise Getoor  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Grycner, A., Weikum, G., Pujara, J., Foulds, J. & Getoor, L. RELLY: Inferring Hypernym Relationships Between Relational Phrases. Conference on Empirical Methods in Natural Language Processing (2015).PDF icon agrycner-emnlp15.pdf (234.86 KB)
Sen, P., Deshpande, A. & Getoor, L. Read-Once Functions and Query Evaluation in Probabilistic Databases. International Conference on Very Large Data Bases (2010).PDF icon draft.pdf (322 KB)
Pujara, J., London, B. & Getoor, L. Reducing Label Cost by Combining Feature Labels and Crowdsourcing. ICML Workshop on Combining Learning Strategies to Reduce Label Cost (2011).PDF icon clsicml_pujara_london.pdf (253.29 KB)
Bilgic, M. & Getoor, L. Reflect and Correct: A Misclassification Prediction Approach to Active Inference. ACM Transactions on Knowledge Discovery from Data 3, 1–32 (2009).PDF icon bilgic-tkdd09.pdf (3.66 MB)
Bhattacharya, I., Licamele, L. & Getoor, L. Relational Clustering for Entity Resolution Queries. ICML Workshop on Statistical Relational Learning (SRL) (2006).PDF icon bhattacharyaicml06-wkshp.pdf (195.79 KB)
Bhattacharya, I. & Getoor, L. Relational Clustering for Multi-type Entity Resolution. ACM SIGKDD Workshop on Multi Relational Data Mining (MRDM) (2005).PDF icon bhattacharyakdd05-whskp.pdf (259.82 KB)
Diehl, C., Namata, G. Mark & Getoor, L. Relationship Identification for Social Network Discovery. AAAI '07: Proceedings of the 22nd National Conference on Artificial Intelligence (2007).PDF icon diehl-aaai07.pdf (139.6 KB)
Sen, P., Deshpande, A. & Getoor, L. Representing Tuple and Attribute Uncertainty in Probabilistic Databases. Workshop on Data Mining of Uncertain Data (ICDM) (2007).PDF icon dune07.pdf (176.67 KB)
Bach, S. H., Huang, B. & Getoor, L. Rounding Guarantees for Message-Passing MAP Inference with Logical Dependencies. NIPS Workshop on Discrete and Combinatorial Problems in Machine Learning (DISCML) (2014).PDF icon bach-discml14.pdf (254.9 KB)