Publications

Export 299 results:
Author [ Title(Desc)] Year
Filters: Author is Lise Getoor  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Sen, P., Deshpande, A. & Getoor, L. PrDB: Managing and Exploiting Rich Correlations in Probabilistic Databases. VLDB Journal, special issue on uncertain and probabilistic databases (2009).PDF icon sen-vldbj09.pdf (1.12 MB)
Lansky, A. & Getoor, L. Practical Planning in COLLAGE. Proceedings of the AAAI Fall Symposium on Planning and Learning: On to Real Applications (1994).
Tomkins, S., Ramesh, A. & Getoor, L. Predicting Post-Test Performance from Online Student Behavior: A High School MOOC Case Study. International Conference on Educational Data Mining (EDM) (2016).PDF icon tomkins-edm16.pdf (619.77 KB)
Licamele, L. & Getoor, L. Predicting Protein-Protein Interactions Using Relational Features. ICML Workshop on Statistical Network Analysis (2006).
Zheleva, E. & Getoor, L. Preserving the Privacy of Sensitive Relationships in Graph Data. Proceedings of the First SIGKDD International Workshop on Privacy, Security, and Trust in KDD (PinKDD 2007) 4890, 153-171 (Springer, 2008).
Zheleva, E. & Getoor, L. Preserving the Privacy of Sensitive Relationships in Graph Data. First ACM SIGKDD Workshop on Privacy, Security, and Trust in KDD (PinKDD 2007) (2007).PDF icon zheleva-pinkdd07.pdf (373.86 KB)
Zheleva, E., Terzi, E. & Getoor, L. Privacy in Social Networks. (Morgan & Claypool Publishers, 2012).
Zheleva, E. & Getoor, L. Social Network Data Analytics (Aggarwal, C.) 247–276 (Springer, 2011).
Sridhar, D., Fakhraei, S. & Getoor, L. A Probabilistic Approach for Collective Similarity-based Drug-Drug Interaction Prediction. Bioinformatics (2016).PDF icon sridhar-bioinformatics_2016.pdf (1.94 MB)
Plangprasopchok, A., Lerman, K. & Getoor, L. A Probabilistic Approach for Learning Folksonomies from Structured Data. Fourth ACM International Conference on Web Search and Data Mining (WSDM) (2011).
Sridhar, D. & Getoor, L. Probabilistic Inference for Causal Structure Discovery. Uncertainty in Artificial Intelligence (UAI) Workshop on Causation (2016).PDF icon sridhar-uai-open-problem-v2.pdf (118.31 KB)
Hung, E., Getoor, L. & Subrahmanian, V. S. Probabilistic Interval XML. ACM Transactions on Computational Logic (TOCL) (2007).
Hung, E., Getoor, L. & Subrahmanian, V. S. Probabilistic Interval XML. Proceedings of the International Conference on Database Theory (2003).
Getoor, L., Segal, E., Taskar, B. & Koller, D. Probabilistic Models of Text and Link Structure for Hypertext Classification. IJCAI Workshop on Text Learning: Beyond Supervision (2001).PDF icon ijcai01-ws.pdf (127.03 KB)
Getoor, L., Friedman, N., Koller, D., Pfeffer, A. & Taskar, B. An Introduction to Statistical Relational Learning (Getoor, L. & Taskar, B.) (MIT Press, 2007).PDF icon srlbook-ch5.pdf (648.15 KB)
Getoor, L., Friedman, N., Koller, D., Pfeffer, A. & Taskar, B. An Introduction to Statistical Relational Learning (Getoor, L. & Taskar, B.) (MIT Press, 2007).PDF icon srlbook-ch5.pdf (648.15 KB)
Broecheler, M., Mihalkova, L. & Getoor, L. Probabilistic Similarity Logic. Conference on Uncertainty in Artificial Intelligence (2010).PDF icon broecheler-uai10.pdf (399.54 KB)
Broecheler, M. & Getoor, L. Probabilistic Similarity Logic. International Workshop on Statistical Relational Learning (SRL'09) (2009).PDF icon broecheler-srl09.pdf (176.13 KB)
Bach, S. H., Huang, B. & Getoor, L. Probabilistic Soft Logic for Social Good. KDD Workshop on Data Science for Social Good (2014).PDF icon bach-dssg14.pdf (124.88 KB)
Huang, B., Kimmig, A., Getoor, L. & Golbeck, J. Probabilistic Soft Logic for Trust Analysis in Social Networks. International Workshop on Statistical Relational Artificial Intelligence (StaRAI 2012) (2012).PDF icon huang-starai12.pdf (241.96 KB)
Kim, S., Kini, N., Pujara, J., Koh, E. & Getoor, L. Probabilistic Visitor Stitching on Cross-Device Web Logs. International Conference on World Wide Web (WWW) 1581–1589 (2017).PDF icon p1581-kimwww17.pdf (1.23 MB)
Getoor, L. & Scheffer, T. Proceedings of the 28th International Conference on Machine Learning. Proceedings of the 28th International Conference on Machine Learning (2011).
Singh, L., Getoor, L. & Licamele, L. Pruning Social Networks Using Structural Properties and Descriptive Attributes. IEEE International Conference on Data Mining (ICDM) 773-776 (2005).PDF icon singh_icdm05.pdf (149.45 KB)
Q
Bhattacharya, I., Licamele, L. & Getoor, L. Query-Time Entity Resolution. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2006).PDF icon kdd06.pdf (183.45 KB)
Namata, G. Mark, London, B., Getoor, L. & Huang, B. Query-driven Active Surveying for Collective Classification. Workshop on Mining and Learning with Graphs (2012).PDF icon namata-mlg12.pdf (257.49 KB)
Bhattacharya, I. & Getoor, L. Query-time Entity Resolution. Journal of Artificial Intelligence Research (JAIR) 30, 621–657 (2007).PDF icon bhattacharya07a.pdf (309.63 KB)
R
Grycner, A., Weikum, G., Pujara, J., Foulds, J. & Getoor, L. RELLY: Inferring Hypernym Relationships Between Relational Phrases. Conference on Empirical Methods in Natural Language Processing (2015).PDF icon agrycner-emnlp15.pdf (234.86 KB)
Sen, P., Deshpande, A. & Getoor, L. Read-Once Functions and Query Evaluation in Probabilistic Databases. International Conference on Very Large Data Bases (2010).PDF icon draft.pdf (322 KB)
Pujara, J., London, B. & Getoor, L. Reducing Label Cost by Combining Feature Labels and Crowdsourcing. ICML Workshop on Combining Learning Strategies to Reduce Label Cost (2011).PDF icon clsicml_pujara_london.pdf (253.29 KB)
Bilgic, M. & Getoor, L. Reflect and Correct: A Misclassification Prediction Approach to Active Inference. ACM Transactions on Knowledge Discovery from Data 3, 1–32 (2009).PDF icon bilgic-tkdd09.pdf (3.66 MB)
Bhattacharya, I., Licamele, L. & Getoor, L. Relational Clustering for Entity Resolution Queries. ICML Workshop on Statistical Relational Learning (SRL) (2006).PDF icon bhattacharyaicml06-wkshp.pdf (195.79 KB)
Bhattacharya, I. & Getoor, L. Relational Clustering for Multi-type Entity Resolution. ACM SIGKDD Workshop on Multi Relational Data Mining (MRDM) (2005).PDF icon bhattacharyakdd05-whskp.pdf (259.82 KB)
Diehl, C., Namata, G. Mark & Getoor, L. Relationship Identification for Social Network Discovery. AAAI '07: Proceedings of the 22nd National Conference on Artificial Intelligence (2007).PDF icon diehl-aaai07.pdf (139.6 KB)
Sen, P., Deshpande, A. & Getoor, L. Representing Tuple and Attribute Uncertainty in Probabilistic Databases. Workshop on Data Mining of Uncertain Data (ICDM) (2007).PDF icon dune07.pdf (176.67 KB)
Bach, S. H., Huang, B. & Getoor, L. Rounding Guarantees for Message-Passing MAP Inference with Logical Dependencies. NIPS Workshop on Discrete and Combinatorial Problems in Machine Learning (DISCML) (2014).PDF icon bach-discml14.pdf (254.9 KB)
S
Sridhar, D., Pujara, J. & Getoor, L. Scalable Probabilistic Causal Structure Discovery. International Joint Conference on Artificial Intelligence (2018). at <https://bitbucket.org/linqs/causpsl/src/master/>PDF icon sridhar-ijcai18.pdf (281.32 KB)
Embar, V., Sridhar, D., Farnadi, G. & Getoor, L. Scalable Structure Learning for Probabilistic Soft Logic. Workshop on Statistical Relational AI (2018).PDF icon VEmbar-StarAI2018.pdf (400.23 KB)
Bach, S. H., Broecheler, M., Getoor, L. & O'Leary, D. P. Scaling MPE Inference for Constrained Continuous Markov Random Fields with Consensus Optimization. Advances in Neural Information Processing Systems (NIPS) 2663–2671 (2012).PDF icon bach-nips12.pdf (274.58 KB)
Lansky, A. & Getoor, L. Scope and Abstraction: Two Criteria for Localized Planning. Proceedings of the International Joint Conference on Arti cial Intelligence (1995).
Lansky, A. & Getoor, L. Scope and Abstraction: Two Criteria for Localized Planning. Proceedings of the Workshop on Theory Reformulation and Abstraction (1994).
Getoor, L., Koller, D. & Taskar, B. Selectivity estimation using probabilistic relational models. Proceedings of ACM-SIGMOD 2001 International Conference on Management of Data (2001).PDF icon sigmod01.pdf (471.72 KB)
Kimmig, A., Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. A Short Introduction to Probabilistic Soft Logic. NIPS Workshop on Probabilistic Programming: Foundations and Applications (2012).PDF icon psl_pp12.pdf (164.6 KB)
Licamele, L. & Getoor, L. Social Capital in Friendship-Event Networks. IEEE International Conference on Data Mining (ICDM) (2006).
Huang, B., Bach, S. H., Norris, E., Pujara, J. & Getoor, L. Social Group Modeling with Probabilistic Soft Logic. NIPS 2012 Workshop - Social Network and Social Media Analysis: Methods, Models, and Applications (2012).
Tomkins, S., Getoor, L., Chen, Y. & Zhang, Y. A Socio-linguistic Model for Cyberbullying Detection. International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2018).PDF icon tomkins-asonam18.pdf (299.34 KB)
Farnadi, G., Bach, S. H., Moens, M. - F., Getoor, L. & De Cock, M. Soft quantification in statistical relational learning. Machine Learning Journal (2017).PDF icon farnadi-mlj17.pdf (1.24 MB)
Rekatsinas, T. et al. SourceSeer: Forecasting Rare Disease Outbreaks Using Multiple Data Sources. 2015 SIAM International Conference on Data Mining (SDM15) (SIAM, 2015).PDF icon rekatsinasSDM2015.pdf (303.08 KB)
Rekatsinas, T., Deshpande, A., Dong, X. Luna, Getoor, L. & Srivastava, D. SourceSight: Enabling Effective Source Selection. ACM SIGMOD Conference (2016).PDF icon modde087.pdf (799.94 KB)
Pujara, J., Augustine, E. & Getoor, L. Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short. Conference on Empirical Methods in Natural Language Processing (EMNLP) (2017). at <https://github.com/eriq-augustine/meta-kg>PDF icon pujara-emnlp17.pdf (677.74 KB)
Islamaj, R., Getoor, L., W. Wilbur, J. & Mount, S. SplicePort - An interactive splice-site analysis tool. Nucleic Acids Research (2007).PDF icon dogan-nar.pdf (1.34 MB)

Pages