Publications

Export 317 results:
Author Title [ Year(Desc)]
2013
Huang, B., London, B., Taskar, B. & Getoor, L. Empirical Analysis of Collective Stability. ICML Workshop on SLG (2013).PDF icon huang-slg13.pdf (237.81 KB)
Getoor, L. & Machanavajjhala, A. Entity Resolution in Big Data. KDD (2013).PDF icon getoor-kdd13.pdf (7.16 MB)
Moustafa, W., Miao, H., Deshpande, A. & Getoor, L. GrDB: A System for Declarative and Interactive Analysis of Noisy Information Networks. SIGMOD (2013).PDF icon moustafa-sigmod13.pdf (1.1 MB)
London, B., Huang, B. & Getoor, L. Graph-based Generalization Bounds for Learning Binary Relations. (2013).PDF icon br_risk_bounds.pdf (304.54 KB)
Bach, S. H., Huang, B., London, B. & Getoor, L. Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction. Uncertainty in Artificial Intelligence (2013).PDF icon bach-uai13.pdf (379.45 KB)
Miao, H., Liu, X., Huang, B. & Getoor, L. A Hypergraph-Partitioned Vertex Programming Approach for Large-scale Consensus Optimization. 2013 IEEE International Conference on Big Data (2013).PDF icon miao-bd13.pdf (307.51 KB)
Pujara, J., Miao, H. & Getoor, L. Joint Judgments with a Budget: Strategies for Reducing the Cost of Inference. ICML Workshop on Machine Learning with Test-Time Budgets (2013).PDF icon pujara_wtbudg13.pdf (221.26 KB)
Pujara, J., Miao, H., Getoor, L. & Cohen, W. Knowledge Graph Identification. International Semantic Web Conference (ISWC) (2013).PDF icon pujara_iswc13.pdf (508.7 KB)
Kang, J., Lerman, K. & Getoor, L. LA-LDA: A Limited Attention Topic Model for Social Recommendation. The 2013 International Conference on Social Computing, Behavioral-Cultural Modeling, & Prediction (SBP 2013) (2013).PDF icon kang-sbp13.pdf (622.52 KB)
Pujara, J., Miao, H., Getoor, L. & Cohen, W. Large-Scale Knowledge Graph Identification using PSL. ICML Workshop on Structured Learning (SLG) (2013).PDF icon pujara_slg13.pdf (277.63 KB)
Pujara, J., Miao, H., Getoor, L. & Cohen, W. Large-Scale Knowledge Graph Identification using PSL. AAAI Fall Symposium on Semantics for Big Data (2013).PDF icon pujara_s4bd13.pdf (306.96 KB)
Bach, S. H., Huang, B. & Getoor, L. Large-margin Structured Learning for Link Ranking. NIPS Workshop on Frontiers of Network Analysis: Methods, Models, and Applications (2013).PDF icon bach-fna13.pdf (210.09 KB)
Bach, S. H., Huang, B. & Getoor, L. Learning Latent Groups with Hinge-loss Markov Random Fields. ICML Workshop on Inferning: Interactions between Inference and Learning (2013).PDF icon bach-inferning13.pdf (348.79 KB)
Ramesh, A., Goldwasser, D., Huang, B., III, H. Daume & Getoor, L. Modeling Learner Engagement in MOOCs using Probabilistic Soft Logic. NIPS Workshop on Data Driven Education (2013).PDF icon ramesh-nipsws13.pdf (153.92 KB)
London, B., Rekatsinas, T., Huang, B. & Getoor, L. Multi-relational Learning Using Weighted Tensor Decomposition with Modular Loss. (2013).PDF icon mrwtd.pdf (460.45 KB)
Pujara, J., Miao, H., Getoor, L. & Cohen, W. Ontology-Aware Partitioning for Knowledge Graph Identification. CIKM Workshop on Automatic Knowledge Base Construction (2013).PDF icon pujara_akbc13.pdf (370.62 KB)
London, B., Huang, B., Taskar, B. & Getoor, L. PAC-Bayes Generalization Bounds for Randomized Structured Prediction. NIP Workshop on Perturbation, Optimization and Statistics (2013).PDF icon london-nips13ws.pdf (205.57 KB)
Rastegari, M., Choi, J., Fakhraei, S., III, H. Daume & Davis, L. Predictable Dual-View Hashing. Proceedings of the 30th International Conference on Machine Learning (ICML-13) 1328–1336 (JMLR, 2013).PDF icon rastegari13.pdf (2.35 MB)
2014
Grycner, A., Weikum, G., Pujara, J., Foulds, J. & Getoor, L. A Unified Probabilistic Approach for Semantic Clustering of Relational Phrases. NeurIPS (2014).
Ramakrishnan, N. et al. ‘Beating the news’ with EMBERS: Forecasting Civil Unrest using Open Source Indicators. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2014).PDF icon ramakrishnan-kdd14.pdf (1.15 MB)
Pujara, J. & Getoor, L. Building Dynamic Knowledge Graphs. NIPS Workshop on Automated Knowledge Base Construction (2014).PDF icon pujara_akbc14.pdf (143.26 KB)
Sridhar, D., Getoor, L. & Walker, M. Collective Stance Classification of Posts in Online Debate Forums. ACL Joint Workshop on Social Dynamics and Personal Attributes in Social Media (2014).PDF icon sridhar-aclws14.pdf (190.8 KB)
Sridhar, D., Foulds, J., Huang, B., Walker, M. & Getoor, L. Collective classification of stance and disagreement in online debate forums. Bay Area Machine Learning Symposium (BayLearn) (2014).
Farnadi, G., Bach, S. H., Moens, M. - F., Getoor, L. & De Cock, M. Extending PSL with Fuzzy Quantifiers. International Workshop on Statistical Relational Artificial Intelligence (StaRAI) (2014).PDF icon farnadi-starai14.pdf (196.15 KB)
Ramesh, A., Goldwasser, D., Huang, B., III, H. Daume & Getoor, L. Learning Latent Engagement Patterns of Students in Online Courses. Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI Press, 2014).PDF icon ramesh-aaai14.pdf (505.47 KB)
Kimmig, A., Mihalkova, L. & Getoor, L. Lifted graphical models: a survey. Machine Learning 1-45 (2014).
Fakhraei, S., Huang, B., Raschid, L. & Getoor, L. Network-Based Drug-Target Interaction Prediction with Probabilistic Soft Logic. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2014).PDF icon fakhraei-tcbb2014_accepted.pdf (3.97 MB)
London, B., Huang, B., Taskar, B. & Getoor, L. PAC-Bayesian Collective Stability. Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (2014).PDF icon london-aistats14.pdf (490.14 KB)
Bach, S. H., Huang, B. & Getoor, L. Probabilistic Soft Logic for Social Good. KDD Workshop on Data Science for Social Good (2014).PDF icon bach-dssg14.pdf (124.88 KB)
Bach, S. H., Huang, B. & Getoor, L. Rounding Guarantees for Message-Passing MAP Inference with Logical Dependencies. NIPS Workshop on Discrete and Combinatorial Problems in Machine Learning (DISCML) (2014).PDF icon bach-discml14.pdf (254.9 KB)
London, B., Huang, B. & Getoor, L. On the Strong Convexity of Variational Inference. NIPS Workshop on Advances in Variational Inference (2014).PDF icon london-nips14ws.pdf (253.72 KB)
Moustafa, W. Eldin, Kimmig, A., Deshpande, A. & Getoor, L. Subgraph Pattern Matching over Uncertain Graphs with Identity Linkage Uncertainty. International Conference on Data Engineering (ICDE) (2014).PDF icon ICDE14_conf_full_374.pdf (1.57 MB)
Bradley, S. & Getoor, L. Topic Modeling for Wikipedia Link Disambiguation. ACM Transactions on Information Systems 32, (2014).
Ramesh, A., Goldwasser, D., Huang, B., III, H. Daume & Getoor, L. Uncovering Hidden Engagement Patterns for Predicting Learner Performance in MOOCs. ACM Conference on Learning at Scale (ACM, 2014).
Ramesh, A., Goldwasser, D., Huang, B., Daume, III, H. & Getoor, L. Understanding MOOC Discussion Forums using Seeded LDA. ACL Workshop on Innovative Use of NLP for Building Educational Applications (ACL, 2014).PDF icon ramesh-aclws14.pdf (137.57 KB)
2015
Pujara, J., London, B. & Getoor, L. Budgeted Online Collective Inference. UAI (2015).PDF icon pujara-uai15.pdf (302.63 KB)
Namata, G., London, B. & Getoor, L. Collective Graph Identification. TKDD 10, (2015).PDF icon namata-tkdd15.pdf (500.96 KB)
Fakhraei, S., Foulds, J., Shashanka, M. & Getoor, L. Collective Spammer Detection in Evolving Multi-Relational Social Networks. KDD (2015).PDF icon fakhraei-kdd2015.pdf (573.89 KB)
Fakhraei, S., Onukwugha, E. & Getoor, L. Data Analytics for Pharmaceutical Discoveries. Healthcare Data Analytics 1, 1--25 (CRC Press, 2015).PDF icon fakhraei-book15.pdf (234.2 KB)
Rekatsinas, T., Dong, X. Luna, Getoor, L. & Srivastava, D. Finding Quality in Quantity: The Challenge of Discovering Valuable Sources for Integration. 7th Biennial Conference on Innovative Data Systems Research (CIDR `15) (2015).PDF icon rekatsinasCIDR15.pdf (396.99 KB)
Rekatsinas, T. et al. Forecasting Rare Disease Outbreaks Using Multiple Data Sources. STAT ANAL DATA MIN (2015).
He, X., Rekatsinas, T., Foulds, J., Getoor, L. & Liu, Y. HawkesTopic: A Joint Model for Network Inference and Topic Modeling from Text-Based Cascades. International Conference on Machine Learning (2015).PDF icon He2015HawkesTopic.pdf (819.91 KB)
Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. ArXiv:1505.04406 [cs.LG] (2015).PDF icon bach-arxiv15.pdf (686.27 KB)
Bach, S. H. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic: A Scalable Approach to Structured Prediction. (2015).PDF icon bach-thesis15.pdf (1.17 MB)
Kouki, P., Fakhraei, S., Foulds, J., Eirinaki, M. & Getoor, L. HyPER: A Flexible and Extensible Probabilistic Framework for Hybrid Recommender Systems. 9th ACM Conference on Recommender Systems (RecSys) (ACM, 2015).PDF icon kouki-recsys15.pdf (1.03 MB)
Sridhar, D., Foulds, J., Walker, M., Huang, B. & Getoor, L. Joint Models of Disagreement and Stance in Online Debate. Annual Meeting of the Association for Computational Linguistics (ACL) (2015).PDF icon sridhar-acl15.pdf (227.14 KB)
Foulds, J., Kumar, S. & Getoor, L. Latent Topic Networks: A Versatile Probabilistic Programming Framework for Topic Models. International Conference on Machine Learning (ICML) (2015).PDF icon Foulds2015LatentTopicNetworks.pdf (382.53 KB)
Kimmig, A., Mihalkova, L. & Getoor, L. Lifted graphical models: a survey. Machine Learning Journal 99, 1–45 (2015).PDF icon kimmig-mlj15.pdf (785.58 KB)
Pujara, J., London, B., Getoor, L. & Cohen, W. Online Inference for Knowledge Graph Construction. Workshop on Statistical Relational AI (2015).PDF icon pujara-starai15.pdf (340.95 KB)
Bach, S. H., Huang, B., Boyd-Graber, J. & Getoor, L. Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRFs. International Conference on Machine Learning (ICML) (2015).PDF icon bach-icml15.pdf (356.46 KB)

Pages