Publications

Export 317 results:
Author [ Title(Asc)] Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Fakhraei, S., Raschid, L. & Getoor, L. Drug-Target Interaction Prediction for Drug Repurposing with Probabilistic Similarity Logic. ACM SIGKDD 12th International Workshop on Data Mining in Bioinformatics (BIOKDD) (ACM, 2013).PDF icon FakhraeiBioKDD13.pdf (669.27 KB)
Barash, V., Smith, M., Getoor, L. & Welser, H. Distinguishing Knowledge vs Social Capital in Social Media with Roles and Context. International Conference on Weblogs and Social Media (2009).PDF icon barash-icwsm09.pdf (171.16 KB)
Tomkins, S., Pujara, J. & Getoor, L. Disambiguating Energy Disaggregation: A Collective Probabilistic Approach. International Joint Conference on Artifi cial Intelligence (2017).PDF icon tomkins-ijcai17.pdf (373.28 KB)
Sharara, H., Rand, W. & Getoor, L. Differential Adaptive Diffusion: Understanding Diversity and Learning whom to Trust in Viral Marketing. The Fifth International AAAI Conference on Weblogs and Social Media (2011).PDF icon adaptive_cascade_model.pdf (646.6 KB)
Tomkins, S., Getoor, L., Chen, Y. & Zhang, Y. Detecting Cyber-bullying from Sparse Data and Inconsistent Labels. Learning with Limited Labeled Data (LLD) NIPS Workshop (2017).PDF icon tomkins-NIPSLLD17.pdf (286.95 KB)
Bhattacharya, I. & Getoor, L. Deduplication and Group Detection using Links. ACM SIGKDD Workshop on Link Analysis and Group Detection (LinkKDD) (2004).PDF icon bhattacharyakdd04-whskp.pdf (231.67 KB)
Moustafa, W. Eldin, Namata, G. Mark, Deshpande, A. & Getoor, L. Declarative Analysis of Noisy Information Networks. ICDE Workshop on Graph Data Management: Techniques and Applications (2011).PDF icon moustafa-gdm11.pdf (1.55 MB)
Bach, S. H., Broecheler, M., Kok, S. & Getoor, L. Decision-Driven Models with Probabilistic Soft Logic. NIPS Workshop on Predictive Models in Personalized Medicine (2010).PDF icon bach-pmpm10.pdf (246.79 KB)
Fakhraei, S., Onukwugha, E. & Getoor, L. Healthcare Data Analytics (Reddy, C. C. Aggarwa) (CRC Press, 2014).
Fakhraei, S., Onukwugha, E. & Getoor, L. Healthcare Data Analytics (Reddy, C. C. Aggarwa) (CRC Press, 2015).PDF icon fakhraei_book_2015.pdf (234.2 KB)
Bilgic, M., Licamele, L., Getoor, L. & Shneiderman, B. D-Dupe: An Interactive Tool for Entity Resolution in Social Networks. Visual Analytics Science and Technology (VAST) (2006).
Bilgic, M., Licamele, L., Getoor, L. & Shneiderman, B. D-Dupe: An Interactive Tool for Entity Resolution in Social Networks. International Symposium on Graph Drawing (Healy, P. & Nikolov, N. S.) 3843, 505–507 (Springer, 2005).PDF icon ddupe.pdf (224.93 KB)
C
Sen, P. & Getoor, L. Cost-Sensitive Learning with Conditional Markov Networks. Data Mining and Knowledge Discovery, Special Issue on Utility Based Data Mining 17, 136–163 (2008).PDF icon draft.pdf (424.09 KB)
Sen, P. & Getoor, L. Cost-Sensitive Learning with Conditional Markov Networks. SIAM Data Mining Workshop on Link Analysis, Counterterrorism and Security (2006).PDF icon sensiam_lacs06.pdf (137.37 KB)
Sen, P. & Getoor, L. Cost-Sensitive Learning with Conditional Markov Networks. International Conference on Machine Learning (2006).PDF icon senicml06.pdf (118.33 KB)
Broecheler, M. & Getoor, L. Computing marginal distributions over continuous Markov networks for statistical relational learning. Advances in Neural Information Processing Systems (NIPS) (2010).PDF icon broecheler-nips10.pdf (382.51 KB)
Augustine, E. & Getoor, L. A Comparison of Bottom-Up Approaches to Grounding for Templated Markov Random Fields. SysML (2018). at <https://github.com/eriq-augustine/grounding-experiments>PDF icon augustine-sysml18.pdf (624.33 KB)
Polymeropoulos, M. et al. Common effect of antipsychotics on the biosynthesis and regulation of fatty acids and cholesterol supports a key role of lipid homeostasis in schizophrenia. Schizophrenia Research (2009).
Udrea, O. & Getoor, L. Combining statistical and logical inference for ontology alignment. Workshop on Semantic Web for Collaborative Knowledge Acquisition at the International Joint Conference on Artificial Intelligence (2007).
Bilgic, M., Namata, G. Mark & Getoor, L. Combining Collective Classification and Link Prediction. Workshop on Mining Graphs and Complex Structures at the IEEE International Conference on Data Mining (ICDM-2007) (2007).PDF icon mgcs07.pdf (105.13 KB)
Sridhar, D., Foulds, J., Huang, B., Walker, M. & Getoor, L. Collective classification of stance and disagreement in online debate forums. Bay Area Machine Learning Symposium (BayLearn) (2014).
Sridhar, D., Getoor, L. & Walker, M. Collective Stance Classification of Posts in Online Debate Forums. ACL Joint Workshop on Social Dynamics and Personal Attributes in Social Media (2014).PDF icon sridhar-aclws14.pdf (190.8 KB)
London, B., Huang, B., Taskar, B. & Getoor, L. Collective Stability in Structured Prediction: Generalization from One Example. Proceedings of the 30th International Conference on Machine Learning (ICML-13) (2013).PDF icon london-icml13-long.pdf (373.82 KB)
Fakhraei, S., Foulds, J., Shashanka, M. & Getoor, L. Collective Spammer Detection in Evolving Multi-Relational Social Networks. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (ACM, 2015).PDF icon fakhraei-kdd2015.pdf (573.89 KB)
Bhattacharya, I. & Getoor, L. CRC Data Mining Series 223-243 (Chapman and Hall, 2008).
Kimmig, A., Memory, A., Miller, R. & Getoor, L. A Collective, Probabilistic Approach to Schema Mapping. International Conference on Data Engineering (ICDE) (2017). at <https://github.com/alexmemory/kimmig-icde17/wiki>PDF icon kimmig-icde17.pdf (463.69 KB)
Fakhraei, S., Huang, B. & Getoor, L. Collective Inference and Multi-Relational Learning for Drug–Target Interaction Prediction. NIPS Workshop on Machine Learning in Computational Biology (MLCB) (2013).
Namata, G. Mark, Kok, S. & Getoor, L. Collective Graph Identification. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011).PDF icon namata-kdd11.pdf (185.7 KB)
Namata, G. Mark, London, B. & Getoor, L. Collective Graph Identification. ACM Transactions on Knowledge Discovery from Data 10, 25:1–25:36 (2015).PDF icon namata-tkdd.pdf (500.96 KB)
Bhattacharya, I. & Getoor, L. Collective Entity Resolution in Relational Data. Data Engineering Bulletin 29, (2006).
Kouki, P., Pujra, J., Marcum, C., Koehly, L. & Getoor, L. Collective Entity Resolution in Multi-Relational Familial Networks. Knowledge and Information Systems (KAIS) (2018).PDF icon kouki-kais18.pdf (1.17 MB)
Kouki, P., Pujara, J., Marcum, C., Koehly, L. & Getoor, L. Collective Entity Resolution in Familial Networks. IEEE International Conference on Data Mining (ICDM) (2017). at <https://github.com/pkouki/icdm2017>PDF icon kouki-icdm17.pdf (653.4 KB)
Bhattacharya, I. & Getoor, L. Collective Entity Resolution In Relational Data. ACM Transactions on Knowledge Discovery from Data 1, 1-36 (2007).PDF icon bhattacharya-tkdd.pdf (346.13 KB)
Bhattacharya, I. Collective Entity Resolution In Relational Data. (2006).PDF icon thesis.pdf (761.21 KB)
London, B. & Getoor, L. Data Classification: Algorithms and Applications (Aggarwal, C.) (CRC Press, 2013).PDF icon cc-chapter.pdf (394.37 KB)
Sen, P. et al. Collective Classification in Network Data. AI Magazine 29, 93–106 (2008).PDF icon sen-aimag08.pdf (497.82 KB)
Namata, G. Mark, Sen, P., Bilgic, M. & Getoor, L. Text Mining: Classification, Clustering, and Applications (Sahami, M. & Srivastava, A.) (Taylor and Francis Group, 2009).
Sen, P., Namata, G. Mark, Bilgic, M. & Getoor, L. Collective Classification. Encyclopedia of Machine Learning (2010).
Embar, V., Pujara, J. & Getoor, L. Collective Alignment of Large-scale Ontologies. AKBC Workshop on Federated KBs and the Open Knowledge Network (2019).PDF icon embar-akbc19.pdf (57.36 KB)
London, B. et al. Collective Activity Detection using Hinge-loss Markov Random Fields. CVPR Workshop on Structured Prediction: Tractability, Learning and Inference (2013).PDF icon london-cvpr13.pdf (705.87 KB)
Lansky, A., Friedman, M., Getoor, L., Schmidler, S. & Jr., N. Short. The Collage/Khoros Link: Planning for Image Processing Tasks. Proceedings of the AAAI Spring Symposium on Integrated Planning Applications (1995).
Zheleva, E., Sharara, H. & Getoor, L. Co-evolution of Social and Affiliation Networks. 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2009).PDF icon fp659-zheleva.pdf (900 KB)
Pujara, J. & Getoor, L. Coarse-to-Fine, Cost-Sensitive Classification of E-Mail. NIPS Workshop on Coarse-to-Fine Processing (2010).PDF icon pujara_nips10.pdf (258.86 KB)
Chang, J., Chen, R., Pujara, J. & Getoor, L. Clustering System Data using Aggregate Measures. SysML (2018).PDF icon chang-sysml18.pdf (299.32 KB)
Islamaj, R., Getoor, L. & W. Wilbur, J. Characterizing RNA secondary-structure features and their effects on splice-site prediction. IEEE ICDM Workshop on Mining and Management of Biological Data (2007).
Doppa, J., Yu, J., Tadepalli, P. & Getoor, L. Chance-Constrained Programs for Link Prediction. NIPS Workshop on Analyzing Networks and Learning with Graphs (2009).PDF icon doppa-nips09wkshp.pdf (161.38 KB)
Muthiah, S. et al. Capturing Planned Protests from Open Source Indicators. AI Magazine 37, 63–75 (2016).PDF icon muthiah-aimag16.pdf (1.23 MB)
Licamele, L., Bilgic, M., Getoor, L. & Roussopoulos, N. Capital and Benefit in Social Networks. ACM SIGKDD Workshop on Link Analysis and Group Detection (LinkKDD) (2005).PDF icon licamele_linkkdd05.pdf (421.14 KB)
Kang, H., Getoor, L. & Singh, L. C-GROUP: A Visual Analytic Tool for Pairwise Analysis of Dynamic Group Membership. Visual Analytics Science and Technology (VAST) (2007).PDF icon vast07-kang.pdf (663.26 KB)
B
Pujara, J. & Getoor, L. Building Dynamic Knowledge Graphs. NIPS Workshop on Automated Knowledge Base Construction (2014).PDF icon pujara_akbc14.pdf (143.26 KB)

Pages