Publications

Export 317 results:
[ Author(Asc)] Title Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
F
Fakhraei, S., Sridhar, D., Pujara, J. & Getoor, L. Adaptive Neighborhood Graph Construction for Inference in Multi-Relational Networks. 12th International SIGKDD Workshop on Mining and Learning with Graphs (MLG) (ACM SIGKDD, 2016).PDF icon fakhraei_mlg_2016.pdf (711.26 KB)
E
Embar*, V., Srinivasan*, S. & Getoor, L. Estimating Aggregate Properties In Relational Networks With Unobserved Data. Ninth International Workshop on Statistical Relational AI at the 34th AAAI Conference on Artificial Intelligence (2020).
Embar, V., Farnadi, G., Pujara, J. & Getoor, L. Aligning Product Categories using Anchor Products. First Workshop on Knowledge Base Construction, Reasoning and Mining (2018).PDF icon embar-kbcom18.pdf (577.65 KB)
Embar, V., Sridhar, D., Farnadi, G. & Getoor, L. Scalable Structure Learning for Probabilistic Soft Logic. Workshop on Statistical Relational AI (2018).PDF icon VEmbar-StarAI2018.pdf (400.23 KB)
Embar, V., Pujara, J. & Getoor, L. Collective Alignment of Large-scale Ontologies. AKBC Workshop on Federated KBs and the Open Knowledge Network (2019).PDF icon embar-akbc19.pdf (57.36 KB)
Embar, V., Srinivasan, S. & Getoor, L. Tractable Marginal Inference for Hinge-Loss Markov Random Fields. Third ICML workshop on Tractable Probabilistic Modeling (2019).PDF icon embar-icmlws19.pdf (410.24 KB)
Elsayed, T., Oard, D., Namata, G. Mark & Getoor, L. Personal Name Resolution in Email: A Heuristic Approach. (2008).PDF icon LAMP_150.pdf (397.61 KB)
Elsayed, T., Oard, D. & Namata, G. Mark. Resolving Personal Names in Email Using Context Expansion. 46th Annual Meeting of the Association of Computational Linguistics 265–268 (2008).PDF icon elsayed-acl08.pdf (294.84 KB)
C
Chen, D. et al. Active Inference for Retrieval in Camera Networks. Workshop on Person Oriented Vision (2011).PDF icon chen-wpov11.pdf (1.53 MB)
Chen, D., Bilgic, M., Getoor, L. & Jacobs, D. Dynamic Processing Allocation in Video. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 2174-2187 (2011).
Chen, D., Bilgic, M., Getoor, L. & Jacobs, D. Efficient Resource-constrained Retrospective Analysis of Long Video Sequences. NIPS Workshop on Adaptive Sensing, Active Learning and Experimental Design: Theory, Methods and Applications (2009).PDF icon chen-nips09-wkshp.pdf (383.38 KB)
Chang, J., Chen, R., Pujara, J. & Getoor, L. Clustering System Data using Aggregate Measures. SysML (2018).PDF icon chang-sysml18.pdf (299.32 KB)
Chajewska, U., Norman, J. & Getoor, L. Using Classi cation Techniques for Utility Elicitation: A Comparison between StandardGamble and Visual Analog Scale Methods. Twentieth Anniversary Meeting of the Society for Medical Decision Making (1998).
Chajewska, U., Getoor, L., Norman, J. & Shahar, Y. Utility Elicitation as a Classi cation Problem. Uncertainty in Arti cial Intelligence (1998).
Chajewska, U., Getoor, L. & Norman, J. Utility Elicitation as a Classification Problem. Proceedings of the AAAI Spring Symposium Series on Interactive and Mixed Initiative Decision-Theoretic Systems (1998).
B
Broecheler, M. & Getoor, L. Computing marginal distributions over continuous Markov networks for statistical relational learning. Advances in Neural Information Processing Systems (NIPS) (2010).PDF icon broecheler-nips10.pdf (382.51 KB)
Broecheler, M., Mihalkova, L. & Getoor, L. Probabilistic Similarity Logic. Conference on Uncertainty in Artificial Intelligence (2010).PDF icon broecheler-uai10.pdf (399.54 KB)
Broecheler, M. & Getoor, L. Probabilistic Similarity Logic. International Workshop on Statistical Relational Learning (SRL'09) (2009).PDF icon broecheler-srl09.pdf (176.13 KB)
Bradley, S. & Getoor, L. Topic Modeling for Wikipedia Link Disambiguation. ACM Transactions on Information Systems 32, (2014).
Bilgic, M. & Getoor, L. Value of Information Lattice: Exploiting Probabilistic Independence for Effective Feature Subset Acquisition. Journal of Artificial Intelligence Research (JAIR) 41, 69–95 (2011).PDF icon bilgic11a.pdf (1.64 MB)
Bilgic, M. & Getoor, L. Active Inference for Collective Classification. Twenty-Fourth Conference on Artificial Intelligence (AAAI NECTAR Track) 1652–1655 (2010).PDF icon bilgic-aaai10.pdf (387.53 KB)
Bilgic, M., Mihalkova, L. & Getoor, L. Active Learning for Networked Data. Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010).PDF icon bilgic-icml10.pdf (515.65 KB)
Bilgic, M. Information Acquisition in Structured Domains. (2010).PDF icon mbilgic-phdthesis.pdf (4.68 MB)
Bilgic, M. & Getoor, L. Link-based Active Learning. NIPS Workshop on Analyzing Networks and Learning with Graphs (2009).PDF icon mbilgic-nips09wkshp.pdf (116.35 KB)
Bilgic, M. & Getoor, L. Reflect and Correct: A Misclassification Prediction Approach to Active Inference. ACM Transactions on Knowledge Discovery from Data 3, 1–32 (2009).PDF icon bilgic-tkdd09.pdf (3.66 MB)
Bilgic, M. & Getoor, L. Effective Label Acquisition for Collective Classification. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 43–51 (2008).PDF icon bilgic-kdd08.pdf (758.14 KB)
Bilgic, M., Namata, G. Mark & Getoor, L. Combining Collective Classification and Link Prediction. Workshop on Mining Graphs and Complex Structures at the IEEE International Conference on Data Mining (ICDM-2007) (2007).PDF icon mgcs07.pdf (105.13 KB)
Bilgic, M. & Getoor, L. VOILA: Efficient Feature-value Acquisition for Classification. AAAI '07: Proceedings of the 22nd National Conference on Artificial Intelligence (2007).PDF icon bilgic-aaai07.pdf (220.47 KB)
Bilgic, M., Licamele, L., Getoor, L. & Shneiderman, B. D-Dupe: An Interactive Tool for Entity Resolution in Social Networks. Visual Analytics Science and Technology (VAST) (2006).
Bilgic, M., Licamele, L., Getoor, L. & Shneiderman, B. D-Dupe: An Interactive Tool for Entity Resolution in Social Networks. International Symposium on Graph Drawing (Healy, P. & Nikolov, N. S.) 3843, 505–507 (Springer, 2005).PDF icon ddupe.pdf (224.93 KB)
Bhattacharya, I. & Getoor, L. CRC Data Mining Series 223-243 (Chapman and Hall, 2008).
Bhattacharya, I. & Getoor, L. Collective Entity Resolution In Relational Data. ACM Transactions on Knowledge Discovery from Data 1, 1-36 (2007).PDF icon bhattacharya-tkdd.pdf (346.13 KB)
Bhattacharya, I. & Getoor, L. Online Collective Entity Resolution. The 22nd National Conference on Artificial Intelligence (NECTAR Track) (AAAI Press, 2007).PDF icon nectar07.pdf (395.24 KB)
Bhattacharya, I. & Getoor, L. Query-time Entity Resolution. Journal of Artificial Intelligence Research (JAIR) 30, 621–657 (2007).PDF icon bhattacharya07a.pdf (309.63 KB)
Bhattacharya, I. & Getoor, L. A Latent Dirichlet Model for Unsupervised Entity Resolution. SIAM Conference on Data Mining (SDM) (2006).PDF icon bhattacharyasdm06.pdf (209.24 KB)
Bhattacharya, I. Collective Entity Resolution In Relational Data. (2006).PDF icon thesis.pdf (761.21 KB)
Bhattacharya, I. & Getoor, L. Collective Entity Resolution in Relational Data. Data Engineering Bulletin 29, (2006).
Bhattacharya, I. & Getoor, L. Entity Resolution in Social Networks. International Sunbelt Social Network Conference (Sunbelt XXVI) (2006).
Bhattacharya, I. & Getoor, L. Mining Graph Data (Cook, D. & Holder, L.) (Wiley, 2006).
Bhattacharya, I., Licamele, L. & Getoor, L. Query-Time Entity Resolution. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2006).PDF icon kdd06.pdf (183.45 KB)
Bhattacharya, I., Licamele, L. & Getoor, L. Relational Clustering for Entity Resolution Queries. ICML Workshop on Statistical Relational Learning (SRL) (2006).PDF icon bhattacharyaicml06-wkshp.pdf (195.79 KB)
Bhattacharya, I. & Getoor, L. Relational Clustering for Multi-type Entity Resolution. ACM SIGKDD Workshop on Multi Relational Data Mining (MRDM) (2005).PDF icon bhattacharyakdd05-whskp.pdf (259.82 KB)
Bhattacharya, I. & Getoor, L. Deduplication and Group Detection using Links. ACM SIGKDD Workshop on Link Analysis and Group Detection (LinkKDD) (2004).PDF icon bhattacharyakdd04-whskp.pdf (231.67 KB)
Bhattacharya, I. & Getoor, L. Iterative Record Linkage for Cleaning and Integration. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD) (2004).PDF icon bhattacharyasigmod04-wkshp.pdf (222.38 KB)

Pages