Publications

Export 316 results:
Author [ Title(Desc)] Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Sridhar, D., Pujara, J. & Getoor, L. Scalable Probabilistic Causal Structure Discovery. International Joint Conference on Artificial Intelligence (2018). at <https://bitbucket.org/linqs/causpsl/src/master/>PDF icon sridhar-ijcai18.pdf (281.32 KB)
Embar, V., Sridhar, D., Farnadi, G. & Getoor, L. Scalable Structure Learning for Probabilistic Soft Logic. Workshop on Statistical Relational AI (2018).PDF icon VEmbar-StarAI2018.pdf (400.23 KB)
Bach, S. H., Broecheler, M., Getoor, L. & O'Leary, D. P. Scaling MPE Inference for Constrained Continuous Markov Random Fields with Consensus Optimization. Advances in Neural Information Processing Systems (NIPS) 2663–2671 (2012).PDF icon bach-nips12.pdf (274.58 KB)
Lansky, A. & Getoor, L. Scope and Abstraction: Two Criteria for Localized Planning. Proceedings of the International Joint Conference on Arti cial Intelligence (1995).
Lansky, A. & Getoor, L. Scope and Abstraction: Two Criteria for Localized Planning. Proceedings of the Workshop on Theory Reformulation and Abstraction (1994).
Getoor, L., Koller, D. & Taskar, B. Selectivity estimation using probabilistic relational models. Proceedings of ACM-SIGMOD 2001 International Conference on Management of Data (2001).PDF icon sigmod01.pdf (471.72 KB)
Kimmig, A., Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. A Short Introduction to Probabilistic Soft Logic. NIPS Workshop on Probabilistic Programming: Foundations and Applications (2012).PDF icon psl_pp12.pdf (164.6 KB)
Licamele, L. & Getoor, L. Social Capital in Friendship-Event Networks. IEEE International Conference on Data Mining (ICDM) (2006).
Huang, B., Bach, S. H., Norris, E., Pujara, J. & Getoor, L. Social Group Modeling with Probabilistic Soft Logic. NIPS 2012 Workshop - Social Network and Social Media Analysis: Methods, Models, and Applications (2012).
Tomkins, S., Getoor, L., Chen, Y. & Zhang, Y. A Socio-linguistic Model for Cyberbullying Detection. International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2018).PDF icon tomkins-asonam18.pdf (299.34 KB)
Farnadi, G., Bach, S. H., Moens, M. - F., Getoor, L. & De Cock, M. Soft quantification in statistical relational learning. Machine Learning Journal (2017).PDF icon farnadi-mlj17.pdf (1.24 MB)
Rekatsinas, T. et al. SourceSeer: Forecasting Rare Disease Outbreaks Using Multiple Data Sources. 2015 SIAM International Conference on Data Mining (SDM15) (SIAM, 2015).PDF icon rekatsinasSDM2015.pdf (303.08 KB)
Rekatsinas, T., Deshpande, A., Dong, X. Luna, Getoor, L. & Srivastava, D. SourceSight: Enabling Effective Source Selection. ACM SIGMOD Conference (2016).PDF icon modde087.pdf (799.94 KB)
Pujara, J., Augustine, E. & Getoor, L. Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short. Conference on Empirical Methods in Natural Language Processing (EMNLP) (2017). at <https://github.com/eriq-augustine/meta-kg>PDF icon pujara-emnlp17.pdf (677.74 KB)
Islamaj, R., Getoor, L., W. Wilbur, J. & Mount, S. SplicePort - An interactive splice-site analysis tool. Nucleic Acids Research (2007).PDF icon dogan-nar.pdf (1.34 MB)
London, B., Huang, B. & Getoor, L. Stability and Generalization in Structured Prediction. (2015).PDF icon london-stability15.pdf (532.16 KB)
London, B., Huang, B. & Getoor, L. Stability and Generalization in Structured Prediction. Journal of Machine Learning Research 17, (2016).PDF icon london-jlmr17.pdf (532.8 KB)
London, B. On the Stability of Structured Prediction. (2015).PDF icon blondon-thesis.pdf (1.16 MB)
Sharara, H., Singh, L., Getoor, L. & Mann, J. Stability vs. Diversity: Understanding the Dynamics of Actors in Time-varying Affiliation Networks. ASE International Conference on Social Informatics (2012).PDF icon stability.pdf (307.98 KB)
Zheleva, E., Guiver, J., Rodrigues, E. Mendes & Milic-Frayling, N. Statistical Models of Music-listening Sessions in Social Media. 19th International World Wide Web Conference (WWW) (2010).PDF icon wfp0858-zheleva.pdf (612.42 KB)
Farnadi, G. et al. Statistical Relational Learning with Soft Quantifiers. International Conference on Inductive Logic Programming (ILP) (2015).PDF icon farnadi-ilp15.pdf (578.43 KB)
London, B., Huang, B. & Getoor, L. On the Strong Convexity of Variational Inference. NIPS Workshop on Advances in Variational Inference (2014).PDF icon london-nips14ws.pdf (253.72 KB)
Getoor, L. Structure Discovery Using Statistical Relational Learning. Data Engineering Bulletin 26, 11- -18 (2003).
Zhang, Y., Ramesh, A., Golbeck, J., Sridhar, D. & Getoor, L. A Structured Approach to Understanding Recovery and Relapse in AA. The Web Conference (WWW) (2018). at <https://github.com/yzhan202/zhang-www18-experiments>PDF icon zhang-www18.pdf (800.66 KB)
Dietterich, T., Domingos, P., Getoor, L., Muggleton, S. & Tadepalli, P. Structured machine learning: the next ten years. Machine Learning 73, 3–23 (2008).
Moustafa, W. Eldin, Kimmig, A., Deshpande, A. & Getoor, L. Subgraph Pattern Matching over Uncertain Graphs with Identity Linkage Uncertainty. International Conference on Data Engineering (ICDE) (2014).PDF icon ICDE14_conf_full_374.pdf (1.57 MB)
Somasundaran, S., Namata, G. Mark, Wiebe, J. & Getoor, L. Supervised and Unsupervised Methods in Employing Discourse Relations for Improving Opinion Polarity Classification. Conference on Empirical Methods in Natural Language Processing (2009).PDF icon somasundaran-emnlp09.pdf (390.93 KB)
Namata, G. Mark, Sharara, H. & Getoor, L. Link Mining: Models, Algorithms, and Applications (Yu, J. Han Philip & Faloutsos, C.) (Springer, 2010).
Tomkins, S., Isley, S., London, B. & Getoor, L. Sustainability at Scale: Bridging the Intention-Behavior Gap with Sustainable Recommendations. Recommender Systems (RecSys) (2018).PDF icon recsys_2018.pdf (655.92 KB)
T
Papadimitriou, P., Tsaparas, P., Fuxman, A. & Getoor, L. TACI: Taxonomy-Aware Catalog Integration. IEEE Transactions on Knowledge and Data Engineering (2012).
Srinivasan*, S., Augustine*, E. & Getoor, L. Tandem Inference: An Out-of-Core Streaming Algorithm For Very Large-Scale Relational Inference. 34th AAAI Conference on Artificial Intelligence (2020).
Zheleva, E. & Getoor, L. To Join or not to Join: The Illusion of Privacy in Social Networks with Mixed Public and Private User Profiles. 18th International World Wide Web conference (WWW) (2009).PDF icon fp660-zheleva.pdf (538.92 KB)
Zheleva, E. & Getoor, L. To Join or not to Join: The Illusion of Privacy in Social Networks with Mixed Public and Private User Profiles. The Web Conference (WWW) (University of Maryland, 2009).PDF icon zheleva-cs-tr4926.pdf (366.68 KB)
Bradley, S. & Getoor, L. Topic Modeling for Wikipedia Link Disambiguation. ACM Transactions on Information Systems 32, (2014).
Embar, V., Srinivasan, S. & Getoor, L. Tractable Marginal Inference for Hinge-Loss Markov Random Fields. Third ICML workshop on Tractable Probabilistic Modeling (2019).PDF icon embar-icmlws19.pdf (410.24 KB)
Augustine, E., Rekatsinas, T. & Getoor, L. Tractable Probabilistic Reasoning Through Effective Grounding. Third ICML workshop on Tractable Probabilistic Modeling (2019).PDF icon augustine-tpm19.pdf (224.8 KB)
Zheleva, E., Kolcz, A. & Getoor, L. Trusting Spam Reporters: A Reporter-based Reputation System for Email Filtering. ACM Transactions on Information Systems 27, (2008).PDF icon zheleva-tois08.pdf (447.31 KB)
U
Ramesh, A., Goldwasser, D., Huang, B., III, H. Daume & Getoor, L. Uncovering Hidden Engagement Patterns for Predicting Learner Performance in MOOCs. ACM Conference on Learning at Scale (ACM, 2014).
Sharara, H., Singh, L., Getoor, L. & Mann, J. Understanding Actor Loyalty to Event-Based Groups in Affiliation Networks. Journal of Advances in Social Networks Analysis and Mining 1, 115–126 (2011).
Ramesh, A. & Getoor, L. Understanding Evolution of Long-running MOOCs. International Conference on Web Information Systems Engineering (WISE) (2018).
Ramesh, A., Rodriguez, M. & Getoor, L. Understanding Influence in Online Professional Networks. NIPS Workshop on Networks in Social and Information Sciences (2015).PDF icon ramesh-nipsws15.pdf (211.44 KB)
Ramesh, A., Goldwasser, D., Huang, B., III, H. Daume & Getoor, L. Understanding MOOC Discussion Forums using Seeded LDA. 9th ACL Workshop on Innovative Use of NLP for Building Educational Applications (ACL, 2014).PDF icon ramesh-aclws14.pdf (137.57 KB)
Getoor, L., Rhee, J., Koller, D. & Small, P. Understanding Tuberculosis Epidemiology Using Probabilistic Relational Models. AI in Medicine Journal 30, 233-256 (2004).
Grycner, A., Weikum, G., Pujara, J., Foulds, J. & Getoor, L. A Unified Probabilistic Approach for Semantic Clustering of Relational Phrases. NIPS Workshop on Automated Knowledge Base Construction (2014).
Bach, S. H., Huang, B. & Getoor, L. Unifying Local Consistency and MAX SAT Relaxations for Scalable Inference with Rounding Guarantees. Artificial Intelligence and Statistics (AISTATS) (2015).PDF icon bach-aistats15.pdf (345.2 KB)
Kumar, S. et al. Unsupervised Models for Predicting Strategic Relations between Organizations. IEEE ACM International Conference on Advances in Social Networks Analysis and Mining (IEEE, 2016).PDF icon kumar_asonam16.pdf (212.61 KB)
Bhattacharya, I., Getoor, L. & Bengio, Y. Unsupervised Sense Disambiguation using Bilingual Probabilistic Models. Annual Meeting of the Association for Computational Linguistics (ACL) (2004).PDF icon acl04.pdf (156.26 KB)
Kouki, P., Schaffer, J., Pujara, J., ODonovan, J. & Getoor, L. User Preferences for Hybrid Explanations. 11th ACM Conference on Recommender Systems (RecSys) (2017).PDF icon kouki-recsys17.pdf (2.64 MB)
Ramesh, A., Yoo, J., Shen, S., Getoor, L. & Kim, J. User Role Prediction in Online Discussion Forums using Probabilistic Soft Logic. (2012).PDF icon Arti_nips_2012_final_version_1.pdf (759.57 KB)
Chajewska, U., Norman, J. & Getoor, L. Using Classi cation Techniques for Utility Elicitation: A Comparison between StandardGamble and Visual Analog Scale Methods. Twentieth Anniversary Meeting of the Society for Medical Decision Making (1998).

Pages