Publications

Export 319 results:
[ Author(Asc)] Title Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
I. Bhattacharya, Getoor, L., and Bengio, Y., Unsupervised Sense Disambiguation using Bilingual Probabilistic Models, in Annual Meeting of the Association for Computational Linguistics (ACL), 2004.PDF icon acl04.pdf (156.26 KB)
H. Bert, Stephen, B., Eric, N., Jay, P., and Getoor, L., Social Group Modeling with Probabilistic Soft Logic, in NeuRIPS Workshop on SNSMA, 2012.PDF icon huang-snsma12.pdf (1.02 MB)
V. Barash, Smith, M., Getoor, L., and Welser, H., Distinguishing Knowledge vs Social Capital in Social Media with Roles and Context, in International Conference on Weblogs and Social Media, 2009.PDF icon barash-icwsm09.pdf (171.16 KB)
S. H. Bach, Huang, B., and Getoor, L., Probabilistic Soft Logic for Social Good, in KDD Workshop on Data Science for Social Good, 2014.PDF icon bach-dssg14.pdf (124.88 KB)
S. H. Bach, Huang, B., London, B., and Getoor, L., Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction, in Uncertainty in Artificial Intelligence, 2013.PDF icon bach-uai13.pdf (379.45 KB)
S. H. Bach, Huang, B., and Getoor, L., Large-margin Structured Learning for Link Ranking, in NIPS Workshop on Frontiers of Network Analysis: Methods, Models, and Applications, 2013.PDF icon bach-fna13.pdf (210.09 KB)
S. H. Bach, Huang, B., and Getoor, L., Learning Latent Groups with Hinge-loss Markov Random Fields, in ICML Workshop on Inferning: Interactions between Inference and Learning, 2013.PDF icon bach-inferning13.pdf (348.79 KB)
S. Bach, Broecheler, M., Getoor, L., and O'Leary, D., Scaling MPE Inference for Constrained Continuous Markov Random Fields with Consensus Optimization, in NeuRIPS, 2012.PDF icon bach-nips12.pdf (274.58 KB)
S. H. Bach, Broecheler, M., Kok, S., and Getoor, L., Decision-Driven Models with Probabilistic Soft Logic, in NIPS Workshop on Predictive Models in Personalized Medicine, 2010.PDF icon bach-pmpm10.pdf (246.79 KB)
S. H. Bach, Broecheler, M., Huang, B., and Getoor, L., Hinge-Loss Markov Random Fields and Probabilistic Soft Logic, Journal of Machine Learning Research (JMLR), vol. 18, pp. 1-67, 2017.PDF icon bach-jmlr17.pdf (731.56 KB)
S. H. Bach, Broecheler, M., Huang, B., and Getoor, L., Hinge-Loss Markov Random Fields and Probabilistic Soft Logic, ArXiv:1505.04406 [cs.LG], 2015.PDF icon bach-arxiv15.pdf (686.27 KB)
S. H. Bach, Hinge-Loss Markov Random Fields and Probabilistic Soft Logic: A Scalable Approach to Structured Prediction, University of Maryland, College Park, 2015.PDF icon bach-thesis15.pdf (1.17 MB)
S. H. Bach, Huang, B., Boyd-Graber, J., and Getoor, L., Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRFs, in International Conference on Machine Learning (ICML), 2015.PDF icon bach-icml15.pdf (356.46 KB)
S. H. Bach, Huang, B., and Getoor, L., Unifying Local Consistency and MAX SAT Relaxations for Scalable Inference with Rounding Guarantees, in Artificial Intelligence and Statistics (AISTATS), 2015.PDF icon bach-aistats15.pdf (345.2 KB)
S. H. Bach, Huang, B., and Getoor, L., Rounding Guarantees for Message-Passing MAP Inference with Logical Dependencies, in NIPS Workshop on Discrete and Combinatorial Problems in Machine Learning (DISCML), 2014.PDF icon bach-discml14.pdf (254.9 KB)

Pages