Publications

Export 312 results:
[ Author(Desc)] Title Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bach, S. H., Huang, B. & Getoor, L. Probabilistic Soft Logic for Social Good. KDD Workshop on Data Science for Social Good (2014).PDF icon bach-dssg14.pdf (124.88 KB)
Bach, S. H., Huang, B., London, B. & Getoor, L. Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction. Uncertainty in Artificial Intelligence (2013).PDF icon bach-uai13.pdf (379.45 KB)
Bach, S. H., Huang, B. & Getoor, L. Large-margin Structured Learning for Link Ranking. NIPS Workshop on Frontiers of Network Analysis: Methods, Models, and Applications (2013).PDF icon bach-fna13.pdf (210.09 KB)
Bach, S. H., Huang, B. & Getoor, L. Learning Latent Groups with Hinge-loss Markov Random Fields. ICML Workshop on Inferning: Interactions between Inference and Learning (2013).PDF icon bach-inferning13.pdf (348.79 KB)
Bach, S. H., Broecheler, M., Getoor, L. & O'Leary, D. P. Scaling MPE Inference for Constrained Continuous Markov Random Fields with Consensus Optimization. Advances in Neural Information Processing Systems (NIPS) 2663–2671 (2012).PDF icon bach-nips12.pdf (274.58 KB)
Bach, S. H., Broecheler, M., Kok, S. & Getoor, L. Decision-Driven Models with Probabilistic Soft Logic. NIPS Workshop on Predictive Models in Personalized Medicine (2010).PDF icon bach-pmpm10.pdf (246.79 KB)
Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. Journal of Machine Learning Research (JMLR) 18, 1-67 (2017).PDF icon bach-jmlr17.pdf (731.56 KB)
Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. ArXiv:1505.04406 [cs.LG] (2015).PDF icon bach-arxiv15.pdf (686.27 KB)
Bach, S. H. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic: A Scalable Approach to Structured Prediction. (2015).PDF icon bach-thesis15.pdf (1.17 MB)
Bach, S. H., Huang, B., Boyd-Graber, J. & Getoor, L. Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRFs. International Conference on Machine Learning (ICML) (2015).PDF icon bach-icml15.pdf (356.46 KB)
Bach, S. H., Huang, B. & Getoor, L. Unifying Local Consistency and MAX SAT Relaxations for Scalable Inference with Rounding Guarantees. Artificial Intelligence and Statistics (AISTATS) (2015).PDF icon bach-aistats15.pdf (345.2 KB)
Bach, S. H., Huang, B. & Getoor, L. Rounding Guarantees for Message-Passing MAP Inference with Logical Dependencies. NIPS Workshop on Discrete and Combinatorial Problems in Machine Learning (DISCML) (2014).PDF icon bach-discml14.pdf (254.9 KB)
Barash, V., Smith, M., Getoor, L. & Welser, H. Distinguishing Knowledge vs Social Capital in Social Media with Roles and Context. International Conference on Weblogs and Social Media (2009).PDF icon barash-icwsm09.pdf (171.16 KB)
Bhattacharya, I. & Getoor, L. CRC Data Mining Series 223-243 (Chapman and Hall, 2008).
Bhattacharya, I. & Getoor, L. Collective Entity Resolution In Relational Data. ACM Transactions on Knowledge Discovery from Data 1, 1-36 (2007).PDF icon bhattacharya-tkdd.pdf (346.13 KB)
Bhattacharya, I. & Getoor, L. Online Collective Entity Resolution. The 22nd National Conference on Artificial Intelligence (NECTAR Track) (AAAI Press, 2007).PDF icon nectar07.pdf (395.24 KB)
Bhattacharya, I. & Getoor, L. Query-time Entity Resolution. Journal of Artificial Intelligence Research (JAIR) 30, 621–657 (2007).PDF icon bhattacharya07a.pdf (309.63 KB)
Bhattacharya, I. & Getoor, L. A Latent Dirichlet Model for Unsupervised Entity Resolution. SIAM Conference on Data Mining (SDM) (2006).PDF icon bhattacharyasdm06.pdf (209.24 KB)
Bhattacharya, I. Collective Entity Resolution In Relational Data. (2006).PDF icon thesis.pdf (761.21 KB)
Bhattacharya, I. & Getoor, L. Collective Entity Resolution in Relational Data. Data Engineering Bulletin 29, (2006).
Bhattacharya, I. & Getoor, L. Entity Resolution in Social Networks. International Sunbelt Social Network Conference (Sunbelt XXVI) (2006).
Bhattacharya, I. & Getoor, L. Mining Graph Data (Cook, D. & Holder, L.) (Wiley, 2006).
Bhattacharya, I., Licamele, L. & Getoor, L. Query-Time Entity Resolution. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2006).PDF icon kdd06.pdf (183.45 KB)
Bhattacharya, I., Licamele, L. & Getoor, L. Relational Clustering for Entity Resolution Queries. ICML Workshop on Statistical Relational Learning (SRL) (2006).PDF icon bhattacharyaicml06-wkshp.pdf (195.79 KB)
Bhattacharya, I. & Getoor, L. Relational Clustering for Multi-type Entity Resolution. ACM SIGKDD Workshop on Multi Relational Data Mining (MRDM) (2005).PDF icon bhattacharyakdd05-whskp.pdf (259.82 KB)
Bhattacharya, I. & Getoor, L. Deduplication and Group Detection using Links. ACM SIGKDD Workshop on Link Analysis and Group Detection (LinkKDD) (2004).PDF icon bhattacharyakdd04-whskp.pdf (231.67 KB)
Bhattacharya, I. & Getoor, L. Iterative Record Linkage for Cleaning and Integration. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD) (2004).PDF icon bhattacharyasigmod04-wkshp.pdf (222.38 KB)
Bhattacharya, I., Getoor, L. & Bengio, Y. Unsupervised Sense Disambiguation using Bilingual Probabilistic Models. Annual Meeting of the Association for Computational Linguistics (ACL) (2004).PDF icon acl04.pdf (156.26 KB)
Bilgic, M. & Getoor, L. Value of Information Lattice: Exploiting Probabilistic Independence for Effective Feature Subset Acquisition. Journal of Artificial Intelligence Research (JAIR) 41, 69–95 (2011).PDF icon bilgic11a.pdf (1.64 MB)
Bilgic, M. & Getoor, L. Active Inference for Collective Classification. Twenty-Fourth Conference on Artificial Intelligence (AAAI NECTAR Track) 1652–1655 (2010).PDF icon bilgic-aaai10.pdf (387.53 KB)
Bilgic, M., Mihalkova, L. & Getoor, L. Active Learning for Networked Data. Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010).PDF icon bilgic-icml10.pdf (515.65 KB)
Bilgic, M. Information Acquisition in Structured Domains. (2010).PDF icon mbilgic-phdthesis.pdf (4.68 MB)
Bilgic, M. & Getoor, L. Link-based Active Learning. NIPS Workshop on Analyzing Networks and Learning with Graphs (2009).PDF icon mbilgic-nips09wkshp.pdf (116.35 KB)
Bilgic, M. & Getoor, L. Reflect and Correct: A Misclassification Prediction Approach to Active Inference. ACM Transactions on Knowledge Discovery from Data 3, 1–32 (2009).PDF icon bilgic-tkdd09.pdf (3.66 MB)
Bilgic, M. & Getoor, L. Effective Label Acquisition for Collective Classification. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 43–51 (2008).PDF icon bilgic-kdd08.pdf (758.14 KB)
Bilgic, M., Namata, G. Mark & Getoor, L. Combining Collective Classification and Link Prediction. Workshop on Mining Graphs and Complex Structures at the IEEE International Conference on Data Mining (ICDM-2007) (2007).PDF icon mgcs07.pdf (105.13 KB)
Bilgic, M. & Getoor, L. VOILA: Efficient Feature-value Acquisition for Classification. AAAI '07: Proceedings of the 22nd National Conference on Artificial Intelligence (2007).PDF icon bilgic-aaai07.pdf (220.47 KB)
Bilgic, M., Licamele, L., Getoor, L. & Shneiderman, B. D-Dupe: An Interactive Tool for Entity Resolution in Social Networks. Visual Analytics Science and Technology (VAST) (2006).
Bilgic, M., Licamele, L., Getoor, L. & Shneiderman, B. D-Dupe: An Interactive Tool for Entity Resolution in Social Networks. International Symposium on Graph Drawing (Healy, P. & Nikolov, N. S.) 3843, 505–507 (Springer, 2005).PDF icon ddupe.pdf (224.93 KB)
Bradley, S. & Getoor, L. Topic Modeling for Wikipedia Link Disambiguation. ACM Transactions on Information Systems 32, (2014).
Broecheler, M. & Getoor, L. Computing marginal distributions over continuous Markov networks for statistical relational learning. Advances in Neural Information Processing Systems (NIPS) (2010).PDF icon broecheler-nips10.pdf (382.51 KB)
Broecheler, M., Mihalkova, L. & Getoor, L. Probabilistic Similarity Logic. Conference on Uncertainty in Artificial Intelligence (2010).PDF icon broecheler-uai10.pdf (399.54 KB)
Broecheler, M. & Getoor, L. Probabilistic Similarity Logic. International Workshop on Statistical Relational Learning (SRL'09) (2009).PDF icon broecheler-srl09.pdf (176.13 KB)

Pages