Publications

Export 12 results:
[ Author(Desc)] Title Year
Filters: Author is Bach, Stephen H.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bach, S. H., Huang, B. & Getoor, L. Probabilistic Soft Logic for Social Good. KDD Workshop on Data Science for Social Good (2014).PDF icon bach-dssg14.pdf (124.88 KB)
Bach, S. H., Huang, B., London, B. & Getoor, L. Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction. Uncertainty in Artificial Intelligence (2013).PDF icon bach-uai13.pdf (379.45 KB)
Bach, S. H., Huang, B. & Getoor, L. Large-margin Structured Learning for Link Ranking. NIPS Workshop on Frontiers of Network Analysis: Methods, Models, and Applications (2013).PDF icon bach-fna13.pdf (210.09 KB)
Bach, S. H., Huang, B. & Getoor, L. Learning Latent Groups with Hinge-loss Markov Random Fields. ICML Workshop on Inferning: Interactions between Inference and Learning (2013).PDF icon bach-inferning13.pdf (348.79 KB)
Bach, S. H., Broecheler, M., Getoor, L. & O'Leary, D. P. Scaling MPE Inference for Constrained Continuous Markov Random Fields with Consensus Optimization. Advances in Neural Information Processing Systems (NIPS) 2663–2671 (2012).PDF icon bach-nips12.pdf (274.58 KB)
Bach, S. H., Broecheler, M., Kok, S. & Getoor, L. Decision-Driven Models with Probabilistic Soft Logic. NIPS Workshop on Predictive Models in Personalized Medicine (2010).PDF icon bach-pmpm10.pdf (246.79 KB)
Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. Journal of Machine Learning Research (JMLR) 18, 1-67 (2017).PDF icon bach-jmlr17.pdf (731.56 KB)
Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. ArXiv:1505.04406 [cs.LG] (2015).PDF icon bach-arxiv15.pdf (686.27 KB)
Bach, S. H. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic: A Scalable Approach to Structured Prediction. (2015).PDF icon bach-thesis15.pdf (1.17 MB)
Bach, S. H., Huang, B., Boyd-Graber, J. & Getoor, L. Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRFs. International Conference on Machine Learning (ICML) (2015).PDF icon bach-icml15.pdf (356.46 KB)
Bach, S. H., Huang, B. & Getoor, L. Unifying Local Consistency and MAX SAT Relaxations for Scalable Inference with Rounding Guarantees. Artificial Intelligence and Statistics (AISTATS) (2015).PDF icon bach-aistats15.pdf (345.2 KB)
Bach, S. H., Huang, B. & Getoor, L. Rounding Guarantees for Message-Passing MAP Inference with Logical Dependencies. NIPS Workshop on Discrete and Combinatorial Problems in Machine Learning (DISCML) (2014).PDF icon bach-discml14.pdf (254.9 KB)