Archived Publications (Latest: https://linqs.github.io/linqs-website/publications/)

Export 18 results:
[ Author(Asc)] Title Year
Filters: First Letter Of Last Name is R  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
T. Rekatsinas, Deshpande, A., and Getoor, L., Local Structure and Determinism in Probabilistic Databases, in SIGMOD, 2012.PDF icon rekatsinas-sigmod12.pdf (490.28 KB)
T. Rekatsinas, Dong, X. Luna, Getoor, L., and Srivastava, D., Finding Quality in Quantity: The Challenge of Discovering Valuable Sources for Integration, in 7th Biennial Conference on Innovative Data Systems Research (CIDR `15), 2015.PDF icon rekatsinasCIDR15.pdf (396.99 KB)
T. Rekatsinas, Quality-Aware Data Source Management, University of Maryland, College Park, 2015.
T. Rekatsinas, Ghosh, S., Mekaru, S., Nsoesie, E., Brownstein, J., Getoor, L., and Ramakrishnan, N., SourceSeer: Forecasting Rare Disease Outbreaks Using Multiple Data Sources, in 2015 SIAM International Conference on Data Mining (SDM15), 2015.PDF icon rekatsinasSDM2015.pdf (303.08 KB)
T. Rekatsinas, Deshpande, A., Dong, L., Getoor, L., and Srivastava, D., SourceSight: Enabling Effective Source Selection, in SIGMOD, 2016.PDF icon rekatsinas-sigmod16.pdf (799.94 KB)
T. Rekatsinas, Ghosh, S., Mekaru, S., Nsoesie, E., Brownstein, J., Getoor, L., and Ramakrishnan, N., Forecasting Rare Disease Outbreaks Using Multiple Data Sources, STAT ANAL DATA MIN, 2015.
M. Rastegari, Choi, J., Fakhraei, S., III, H. Daume, and Davis, L., Predictable Dual-View Hashing, in Proceedings of the 30th International Conference on Machine Learning (ICML-13), 2013, pp. 1328–1336.PDF icon rastegari13.pdf (2.35 MB)
A. Ramesh, Goldwasser, D., Huang, B., III, H. Daume, and Getoor, L., Learning Latent Engagement Patterns of Students in Online Courses, in Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.PDF icon ramesh-aaai14.pdf (505.47 KB)
A. Ramesh, Goldwasser, D., Huang, B., III, H. Daume, and Getoor, L., Uncovering Hidden Engagement Patterns for Predicting Learner Performance in MOOCs, in ACM Conference on Learning at Scale, 2014.
A. Ramesh, Goldwasser, D., Huang, B., Daume, III, H., and Getoor, L., Understanding MOOC Discussion Forums using Seeded LDA, in ACL Workshop on Innovative Use of NLP for Building Educational Applications, 2014.PDF icon ramesh-aclws14.pdf (137.57 KB)
A. Ramesh, Goldwasser, D., Huang, B., III, H. Daume, and Getoor, L., Modeling Learner Engagement in MOOCs using Probabilistic Soft Logic, in NIPS Workshop on Data Driven Education, 2013.PDF icon ramesh-nipsws13.pdf (153.92 KB)
A. Ramesh, Rodriguez, M., and Getoor, L., Multi-relational influence models for online professional networks, in International Conference on Web Intelligence (ICWI), 2017, pp. 291-298.PDF icon ramesh-icwi17.pdf (761.17 KB)
A. Ramesh, Rodriguez, M., and Getoor, L., Understanding Influence in Online Professional Networks, in NIPS Workshop on Networks in Social and Information Sciences, 2015.PDF icon ramesh-nipsws15.pdf (211.44 KB)
A. Ramesh, Kumar, S., Foulds, J., and Getoor, L., Weakly Supervised Models of Aspect-Sentiment for Online Course Discussion Forums, in 53rd Annual Meeting of the Association for Computational Linguistics (ACL), 2015.PDF icon ramesh-acl15.pdf (168.7 KB)
A. Ramesh, A Probabilistic Approach to Modeling Socio-Behavioral Interactions, University of Maryland, College Park, 2016.PDF icon ramesh-thesis16.pdf (865.41 KB)
A. Ramesh and Getoor, L., Understanding Evolution of Long-running MOOCs, in International Conference on Web Information Systems Engineering (WISE), 2018.
A. Ramesh, Goldwasser, D., Huang, B., Daume, III, H., and Getoor, L., Interpretable Engagement Models for MOOCs using Hinge-loss Markov Random Fields, IEEE Transactions on Learning Technologies (TLT), vol. 14, pp. 1-1, 2019.PDF icon ramesh-tlt19.pdf (4.3 MB)
N. Ramakrishnan, Butler, P., Self, N., Khandpur, R., Saraf, P., Wang, W., Cadena, J., Vullikanti, A., Korkmaz, G., Kuhlman, C., Marathe, A., Zhao, L., Ting, H., Huang, B., Srinivasan, A., Trinh, K., Getoor, L., Katz, G., Doyle, A., Ackermann, C., Zavorin, I., Ford, J., Summers, K., Fayed, Y., Arredondo, J., Gupta, D., and Mares, D., ‘Beating the news’ with EMBERS: Forecasting Civil Unrest using Open Source Indicators, in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2014.PDF icon ramakrishnan-kdd14.pdf (1.15 MB)