Collective Spammer Detection in Evolving Multi-Relational Social Networks

TitleCollective Spammer Detection in Evolving Multi-Relational Social Networks
Publication TypeConference Paper
Year of Publication2015
AuthorsFakhraei, S, Foulds, J, Shashanka, M, Getoor, L
Conference NameKDD
Abstract

Detecting unsolicited content and the spammers who create it is a long-standing challenge that affects all of us on a daily basis. The recent growth of richly-structured social networks has provided new challenges and opportunities in the spam detection landscape. Motivated by the Tagged.com social network, we develop methods to identify spammers in evolving multi-relational social networks. We model a social network as a time-stamped multi-relational graph where vertices represent users, and edges represent different activities between them. To identify spammer accounts, our approach makes use of structural features, sequence modelling, and collective reasoning. We leverage relational sequence information using k-gram features and probabilistic modelling with a mixture of Markov models. Furthermore, in order to perform collective reasoning and improve the predictive power of a noisy abuse reporting system, we develop a statistical relational model using hinge-loss Markov random fields (HL-MRFs), a class of probabilistic graphical models which are highly scalable. We use Graphlab Create and Probabilistic Soft Logic (PSL) to prototype and experimentally evaluate our solutions on internet-scale data from Tagged.com. Our experiments demonstrate the effectiveness of our approach, and show that models which incorporate the multi-relational nature of the social network significantly gain predictive performance over those that do not.