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1.1 Introduction
Interdisciplinary computational approaches that combine statistics, computer science, medicine,

chemoinformatics, and biology are becoming highly valuable for drug1 discovery and development.
Data mining and machine learning methods are being more commonly used to properly analyze
the emerging high volumes of structured and unstructured biomedical and biological data from
several sources including hospitals, laboratories, pharmaceutical companies, and even social media.
These data may include sequencing and gene expression, drug molecular structures, protein and
drug interaction networks, clinical trial and electronic patient records, patient behavior and self-
reporting data in social media, regulatory monitoring data, and biomedical literature.

Data mining methods can be used in several stages of drug discovery and development to achieve
different goals. Figure 1.1 summarizes the drug development and FDA2 approval process diagram.
Most new compounds fail during this approval process in clinical trials or cause adverse side effects.
The cost of successful novel chemistry-based drug development often reaches millions of dollars,
and the time to introduce the drug to market often comes close to a decade [1]. The high failure rate
of drugs during this process, make the trial phases known as the “valley of death” [2].

Similar to many other domains, pharmaceutical data mining algorithms aim to limit the search
space and provide recommendations to domain experts for hypothesis generation and further analy-
sis and experiments. One way to categorize data mining and machine learning approaches is based
on their application to pre-marketing and post-marketing stages. In pre-marketing stage, data min-
ing methods focus on discovery activities, including but not limited to, finding signals that indicate
relations between drugs and targets, drugs and drugs, genes and diseases, protein and diseases, and
finding bio-markers. In this stage potential interactions that could cause therapeutic or adverse ef-
fects are studied. Most of the chemical compounds under study at this stage have not been through
clinical trails, and the in silico experiments serve as a basis for further explorations for them. In post-
marketing stage an important application of data analytics is in finding indications of adverse side
effects for approved drugs. These algorithms provide a list of potential drug side effect associations
that can be used for further studies.

In this chapter we provide a brief overview of some data analytics applications in this domain,
and mainly focus on two major tasks from each stage. We first summarize some of the main methods
for drug-target interaction prediction that is highly important during the pre-marketing stage. We
then provide an overview of pharmacovigilance (or drug safety surveillance) which is an important
focus in the post-marketing stage.

1.1.1 Pre-marketing stage
In the pre-marketing stage, data mining algorithms primarily focus on drug discovery and pre-

dicting potential adverse effects using characteristics of the compounds (e.g., drug targets, chemical
structure) or screening data (e.g., bioassay data) [4]. One of the important challenges where data
mining and machine learning methods could be very beneficial is drug-target interaction prediction.
This task is also highly important for drug repurposing and drug adverse reactions prediction [5]. In
vitro identification of drug-target associations is a labor-intensive and costly procedure. Hence, in
silico prediction methods are promising approaches for focusing in vitro investigations [6].

Most drugs affect multiple targets, and Polypharmacology, the study of such interactions, is
an area of growing interest [7]. These multi-target interactions potentially result in adverse side
effects or unintentional therapeutic effects, and is the main cause in the high failure rate of drug

1Organic molecules that bind to bio-molecular targets and inhibit or activate their functions.
2U.S. Food and Drug Administration.
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FIGURE 1.1: The drug development process [3].

candidates in clinical trials. Unacceptable toxicities resulting from these interactions account for
approximately 30% of the failures [8]. Predicting these interactions during the drug developmental
phase can reduce the high cost of clinical trials and can be crucial for the commercial success of
new drugs.

Moreover, due to the high cost and low success rate of novel drug development, pharmaceutical
companies are also interested in drug repositioning or repurposing, which involves finding new
therapeutic effects of pre-approved drugs. For example, Sildenafil, which was originally developed
for pulmonary arterial hypertension treatment, was re-purposed and branded as Viagra, based on its
side effect of treating erectile dysfunction in men [9].

Another important task where data mining algorithms can also be effective is drug-drug inter-
action prediction, which may account for up to 30% of unexpected adverse drug events and close
to 50% in hospitalized patients [10]. For example, Tramadol (a pain reliever) can enhance the effect
of Fluoxetine (Prozac), increasing Serotonin levels and potentially leading to seizures [11]. The
National Health and Nutrition Examination Survey [12] reports that over 76% of elderly Americans
are taking two or more drugs each day. Another study estimated that 29.4% of elderly patients are
taking six or more drugs [13]. The drug-drug interactions can be predicted in pre-marketing stage
from compounds profiles [14, 15] or identified in post-marketing stage using signals from several
sources [16, 17]. For example, Gottlieb et al. [18] infer drug-drug interactions based on several
similarities between the drugs and the previously known interactions between them.
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1.1.2 Post-marketing stage
In the post-marketing stage an important focus of data mining methods is on finding patterns that

indicate potential drug related adverse events [4]. Undiscovered severe adverse events may lead to
drug withdrawals which can be financially detrimental for the manufacturers [4]. Several drugs have
been withdrawn from the market over the years [19]. For example, Vioxx, which was considered a
powerful anti-inflammatory drug was withdrawn due to an increased coronary risk [20, 21].

Each year more than two million hospitalizations and injuries, and seven hundred thousand
emergency visits in the United States have been estimated to be caused by these effects [22, 4, 23].
They have also been estimated to cost seventy five billion dollars annually [11]. It is also estimated
that each year 6–7% of hospitalized patients experience severe adverse drug related events, which
can lead to a potential hundred thousand deaths, making it the fourth largest cause of death in the
U.S. [23].

Since only a limited number of patient characteristics are studied in clinical trials and for a
limited duration, often complex safety issues associated with a new drug cannot be fully studied
with clinical trials [11]. Adverse drug effects are often defined as the following [24]:

“Any unintended and undesirable effects of a drug beyond its anticipated therapeutic ef-
fects occurring during clinical use.”

Pharmacovigilance (or drug safety surveillance) is the science that concerns with the detec-
tion, assessment, understanding and prevention of adverse drug reactions [4]. Pharmacovigilance is
formally defined by World Health Organization (WHO) as [25]:

“The science and activities related to the detection, assessment, understanding and pre-
vention of adverse effects or any other drug-related problems.”

Data analysis algorithms are crucial to narrow the search space and detect the hidden patterns.
Harpaz et al. [11] define data mining algorithms for Pharmacovigilance as:

“Automated high-throughput methods to uncover hidden relationships of potential clinical
significance to drug safety.”

They report that volume of publications on data mining methods for Pharmacovigilance index
in PubMed3 has grown from less than 40 in the year 2000 to about 200 a year in 2011. An important
focus of data mining algorithms in post-marketing stage is on computing measures of statistical
association between pairs of drugs and clinical outcomes recorded in underlying data sources [26].

1.1.3 Data sources and other applications
There are several important data mining applications that we do not address in this chapter. For

example, another area of growing interest where data mining algorithms play a significant role is
predicting individual drug responses and personalized medicine [27, 28]. Personalized medicine or
Pharmacogenomics, is using an individual’s genetic profile to make the best therapeutic choice by
facilitating predictions about whether that person will benefit from a particular medicine or will
suffer serious side effects [29]. For example, Pharmacogenomics Knowledgebase (PharmGKB) is
a resource that collects, curates, and disseminates information about the impact of human genetic
variation on drug responses [30].

Data mining algorithms in different stages of drug development use different data sources.

3A search engine accessing primarily the MEDLINE database of references and abstracts on life sciences and biomedical
topics.



Data Analytics for Pharmaceutical Discoveries 5

Chemical and biological data are mainly used in pre-marketing stage for tasks such as hypothesis
generation and prediction, while spontaneous reporting systems, electronic health records and ad-
ministrative claims data are often used in post-marketing data mining tasks mainly to detect signals
of association. Biomedical literature and patient-generated data in health-related Internet forums
has also received considerable research interest in recent years [11].

In the rest of the chapter, we highlight some of the related data mining tasks and methods based
on the data resource they are applied to. First, we summarize some of the methods that use chemical
and biological data focusing on approaches that predict drug-target and drug-drug interactions. We
then highlight methods that detect patterns of drug related adverse events using spontaneous reports,
electronic health records and patient generated data such as web search engine logs. We also men-
tion some of the advances in application of data mining in biomedical literature that can facilitate
pharmaceutical discoveries.

There is a plethora of high quality research recently published related to data analytics in phar-
maceutical discoveries which we could not cover in this chapter. We did not aim to provide a com-
plete or comprehensive survey; our goal was to provide highlights of some of the important data
analytics methods in this domain.

1.2 Chemical and Biological Data
One of the important goals of data mining methods that use chemical and biological data is

predicting interactions between chemical compounds (e.g., drugs) and biological targets (e.g., pro-
teins) which could cause therapeutic or adverse effects, or interactions between two or more chem-
ical compounds that could cause potential adverse effects. Openly available databases, including
multiple resources available on the Internet that include drug related data and information about
their targets are highly used for this task. These databases are used to study properties of drugs for
several purposes, including drug-target and drug-drug interaction elucidation. Table 1.1 summarizes
some of the more commonly used databases that contain information about drugs, their targets and
interactions between them.

There are several methods to model the drug-target interaction prediction task [38]. They can
be separated into two categories based on their explicit emphasis on the graph or network represen-
tation of drugs and targets interactions. The first category constructs a network structure to predict
interactions [39], while others make predictions based on other factors. In this section, we mainly
cover network based approaches.

Among the methods that do not use a network representation, the similarity ensemble approach
(SEA), used ligands4 to predict interactions between drugs and targets. They used ligands for target
representation and chemical similarities between drugs and ligand sets as potential interaction indi-
cators [6]. In CMap, Lamb [40] used RNA expressions to represent diseases, genes, and drugs [35].
They compared up- and down-regulations of the gene-expression profiles from cultured human cells
treated with bioactive molecules and provided cross-platform comparisons. They predicted new po-
tential interactions based on opposite-expression profiles of drugs and diseases.

Methods that consider the network structure address two important factors. The first one is how
to construct the network and what information to include, and the other is how to predict new
interactions. In the following sections, we summarize the main approaches for each task.

4A small molecule, that forms a complex with a biomolecule to serve a biological purpose.
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Name URL Description
Drugbank [31] www.drugbank.ca Drug (i.e. chemical, pharmacologi-

cal and pharmaceutical) data with
their targets (i.e. sequence, structure,
and pathway) information.

KEGG Drug [32] www.genome.jp/kegg/drug Chemical drug structures with their
targets.

MATADOR
(Manually An-
notated Targets
and Drugs Online
Resource)[33]

matador.embl.de Drugs and their target interactions.

DCDB (Drug Com-
bination Database)
[34]

www.cls.zju.edu.cn/dcdb Drug combinations and their targets.

DBPedia www.dbpedia.org Drugs, diseases and proteins infor-
mation extracted from Wikipedia.

ChEMBL www.ebi.ac.uk/chembl Trial drugs with their targets.
Connectivity Map
(CMAP) [35]

www.broadinstitute.org/cmap Genetic profile information about
diseases and drugs.

Pubchem [36] pubchem.ncbi.nlm.nih.gov Biological activities of small
molecules (i.e. drugs).

Therapeutic Target
Database

bidd.nus.edu.sg/group/cjttd Therapeutic protein and nucleic acid
targets, disease, pathway informa-
tion and the corresponding drugs.

PDTD (Poten-
tial Drug Target
Database)

www.dddc.ac.cn/pdtd Drug targets information, focused on
the ones with known 3D-structures.

Drug2Gene [37] www.drug2gene.com A knowledge base combining the
compound/drug-gene/protein infor-
mation from several publicly avail-
able databases.

TABLE 1.1: Databases containing chemical and biological data.

1.2.1 Constructing a network representation
A number of research publications study network structures to predict interactions. Cockell

et al. [9] described how to integrate drugs, targets, genes, proteins, and pathways into a network for
different tasks. Nodes in this network usually include drugs, proteins and diseases, and edges include
their interactions and similarities, where similarities could be extracted from several sources such
as chemical structure of the compounds [5]. Figure 1.2 shows an example of a schematic overview
of such networks.

Lee et al. [41] described drug repurposing, multi-agent drug development, and estimation of
drug effects on target perturbations via network-based solutions. Yildirim et al. [39] explained trends
in the drug-discovery industry over time using a network-based analysis and showed that sequencing
the genome is changing the traditional trends of drug development. They also discussed different
structural aspects of this network including preferential attachment and cluster formation.
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Disease Protein Involved in 

Is similar to 
(several 
similarities) 

Drug 

Interacts 
with 

Interacts  
with 

Is similar to 
(several 
similarities) 

Interacts 
with 

Has similar 
symptoms 

FIGURE 1.2: Network representation example of drugs, targets and diseases.

A common approach to predict new interactions is to construct a bipartite interaction network
where nodes represent drugs and targets, and edges denote interactions. Drug-drug and target-target
similarities can augment this network on each side. Data from multiple publicly accessible datasets
can be integrated to build these networks [41]. The similarities between drugs and between targets
can have different semantics. For example, targets can have similarity measures based on their se-
quences and their ontology annotations [5, 42]. Another example is drug side effects; while potential
drug side effects can be predicted via the drug-target interaction predictions [43] they can also be
used as similarities between drugs to predict new targets [44]. There are a few databases that contain
information about the drugs’ known side-effects. Table 1.2 summarizes a few datasets that contain
this information.5

Name URL Description
SIDER [45] sideeffects.embl.de Information on marketed

drugs and their recorded
adverse drug reactions.

Drugs.com www.drugs.com/sfx Information about drugs and
their side effects.

MedlinePlus www.nlm.nih.gov/
medlineplus/
druginformation.html

National Library of
Medicine’s website con-
taining drugs and their side
effects.

TABLE 1.2: Databases that include drug side effects.

1.2.2 Interaction prediction methods
In the drug-target interaction network, similar targets tend to interact with the same drugs, and

similar drugs tend to interact with the same targets [9]. Using variations of this intuition a link
prediction method can predict new potential drug-target interactions in a drug-target interaction
network [46].

5These databases mainly do not focus on chemical and biological data.
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1.2.2.1 Single similarity based methods

Network-based approaches integrate drug-drug and target-target similarities extracted via dif-
ferent methods (e.g. SEA and CMap) with the drug-target interactions network [38]. The following
methods proposed a single similarity measure for drugs and targets to predict interactions.

Cheng et al. [47] predicted potential interactions using drug-drug and target-target similarities
and a bipartite interaction graph. Using SIMCOMP [48], they computed the 2D chemical drug simi-
larities and sequence similarities for targets via the Smith-Waterman score. They used the following
three link-prediction methods:

1. Drug-based similarity inference (DBSI) where they only considered similarities
between drugs for prediction.

2. Target-based similarity inference (TBSI) where they only considered target simi-
larities for prediction.

3. Network-based inference (NBI) where they combined both drug-drug and target-
target similarities.

Alaimo et al. [49] extended this approach by proposing a hybrid drug-target method that integrated
prior domain knowledge.

Yamanishi et al. [50] proposed three methods for interaction prediction, including a nearest
neighbor approach, a weighted k-nearest neighbors approach, and a space integration. In their space
integration method, they described a genomic space, using the Smith-Waterman score, and a phar-
maceutical space, using the SIMCOMP score. They proposed a method to integrate drugs and targets
in a unified latent pharmacological space, and they predicted interactions based on the proximity of
drugs and targets in that space. Figure 1.3 shows an overview of their method. They separated out
four categories of targets, namely enzymes, ion channels, GPCR, and nuclear receptors for their ex-
periments which was adopted by most subsequent drug-target interaction prediction methods [38].
Overall steps in their method include:

1. Embed compounds and proteins on the interaction network into a unified space
called “pharmacological space”.

2. Learn a model between the chemical/genomic space and the pharmacological
space, and map any compounds/proteins onto the pharmacological space.

3. Predict interacting compound–protein pairs by connecting compounds and pro-
teins which are closer than a threshold in the pharmacological space.

Target Drug 

Target 

Target 

Target 

Drug 

Drug 

Drug 

Drug 

Drug 

Drug 

Drug 

Target Target 

Target 

Target 

Genomic space Chemical space Pharmacological space 

FIGURE 1.3: Overview of Yamanishi et al.’s [50] method.
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Bleakley and Yamanishi [51] extended this method by constructing local models for graph infer-
ence. They classified each interaction twice and combined the results to provide predictions. First,
they built a classifier based on drugs and then based on targets. They used the similarities as the
support vector machine (SVM) kernels. Further extending this method, Mei et al. [52] proposed an
approach to infer training data from neighbors’ interaction profiles to make predictions for new drug
or target candidates that do not have any interactions in the network. Wang and Zeng [53] proposed
a method based on restricted Boltzmann machines for drug-target interaction prediction.

1.2.2.2 Multiple similarity based methods

More complex methods can predict interactions based on multiple heterogeneous similarities.
Chen et al. [54] reasoned about the possibility of a drug-target interaction in relation with other
linked objects. They used distance, shortest paths, and other topological properties in the network
to assess the strength of a relation. Their method assigned scores to paths between drugs and targets
and combined path scores for each drug-target pair.

Perlman et al. [42] proposed a supervised learning method along with a feature-engineering
approach based on combinations of drug-drug and target-target similarities to predict interactions,
called similarity-based inference of drug targets (SITAR). They built their model based on five drug-
drug and three target-target similarities. For each potential drug-target interaction, they built a fea-
ture based on how similar that potential drug-target interaction is to one of the observed interactions
in the network, and computed the interaction similarity based on the weighted combination of the
drug-drug and target-target similarities. Overall steps of their method include:

1. They considered chemical-based, ligand-based, expression-based, side-effect-
based, and annotation-based similarities between drugs, and computed target
similarities using sequence-based, protein-protein interaction network-based, and
gene ontology-based information.

2. They built a dataset where each link (i.e., drug-target pair) is a sample (i.e., row)
and computed 15 (i.e., 5×3) features for each link based on the similarities. The
sample was labeled with class 1 if the drug-target pair was a known interaction,
and 0 otherwise.

3. Their model computed the value of each feature based on how similar the potential
drug-target interaction is to the closest observed interaction in the network, and
computed the similarity of the interaction based on the weighted combination of
the drug-drug and target-target similarities.

4. A logistic regression classifier on this dataset was then used to predict new inter-
actions.

Fakhraei et al. [5, 55] proposed a drug-target interaction prediction framework based on proba-
bilistic soft logic (PSL), to collectively predict interactions using a structured representation of the
network. Their interpretable model captured the multi-relational characteristics of the drug-target
interaction network (i.e., nodes and edges with different semantics). They proposed PSL models
that reason over rules, based on triad and tetrad structural intuitions, and improved the prediction
result of Perlman et al. [42]. Figure 1.4 shows how similarities were used in their method for new
drug-target interaction prediction in their triad-based rules, which captures the tendency of similar
targets interacting with the same drugs, and similar drugs interacting with the same targets. They
used the following steps for their predictions:

1. Similar to SITAR [42], they used five drug-drug and three target-target similari-
ties.

2. They used a blocking threshold to only include the k most similar drugs or targets
for each entity in their model.
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3. They defined rules based on triad structures with the overall intuition that similar
drugs tend to interact with the same target, and a drug tends to interact with similar
targets. They introduced a rule for each similarity measure (i.e., eight rules in
total).

4. They defined tetrad based rules with the intuition that similar drugs tend to interact
with similar targets.

5. They considered a negative prior to capture the sparsity of the network.
6. They studied the effect of collective inference and combination of similarities in

improving the performance.

Target A 
Is similar to 
(several 
similarities) 

Drug 
Interacts  
with Is similar to 

(several 
similarities) 

Target B 
? 

Target Drug A 
Interacts  
with 

Drug B ? 

FIGURE 1.4: Predicting new drug-target interactions based on drug-drug and target-target similar-
ities.

1.3 Spontaneous Reporting Systems (SRS)
Spontaneous reporting systems are important data sources for post-marketing analysis and data

mining, and up until recent years they have been the main resource for pharmacovigilance (or drug
safety surveillance) [56, 57].

“Spontaneous reporting systems are passive systems composed of reports of suspected
adverse drug events collected from health-care professionals, consumers, and pharmaceu-
tical companies, and maintained largely by regulatory and health agencies [11].”

They have supported regulatory decisions for a long list of marketed drugs since their inception.
There are two main spontaneous reporting systems administrated by US Food and Drug Adminis-
tration (FDA) and World Health Organization (WHO) which are described in Table 1.3.

Spontaneous reporting systems (SRS) have a structured format and include information on the
drug suspected to cause the adverse reaction. They also contain limited demographic information
[11]. There are multiple advantages in using them for pharmacovigilance. They are centralized
sources of information focused on drug–adverse event relationships and cover large populations.
They are also accessible for analysis and research [58].

While spontaneous reporting systems are the main source of post-market drug adverse effect
identification, they have several limitations [59]. Only a fraction of adverse drug events are iden-
tified and reported in these systems because reporting to them is on a voluntary basis, except for
pharmaceutical companies, which are required to report suspected adverse drug reaction. They may
also contain biased reporting rates and missing patient data [60, 61].

There are many reasons causing such limitations in spontaneous reporting systems. Physicians
may worry about possible legal issues after disclosure of medical errors, or may not clearly under-
stand the definition of an adverse events. They may consider that the circumstances of a case or its
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Name URL Description
FDA Adverse Event Reporting
System (FAERS)

www.fda.gov/Drugs/
GuidanceCompliance
Regulatory
Information/Surveillance/
AdverseDrugEffects

Information on adverse event
and medication error reports
submitted to FDA.

VigiBase www.umc-products.com/
vigibase services

World Health Organizations
global individual case safety
reports database.

TABLE 1.3: Spontaneous reporting systems dataset.

outcome do not warrant reporting, or do not believe that reporting will lead to improvement. They
may also not see what added value the growing body of quality and safety guidelines provide in
terms of patient outcomes [21]. Amalberti et al. [21] and Strom [20] suggest several improvements
to the spontaneous reporting systems to address some of these challenges and also introduce further
categories to better organize the reports for analysis.

The main methods that focus on spontaneous reporting systems data are designed to generate
measures of statistical association for large sets of drug–outcome pairs. These signals can be used
to prioritize and identify risks for further evaluations. Newer approaches have been designed to
facilitate identification of higher-order or multi-variate associations that represent more complex
safety phenomena such as drug-drug interactions [11]. The main methods for signal identification
using the spontaneous reporting systems data are summarized in the following sections.

1.3.1 Disproportionality analysis
Disproportionality analysis plays an important role in most methods applied to spontaneous

reporting systems data. Frequency analysis of 2× 2 contingency tables (shown in 1.4) is used to
estimate measures of statistical association between specific drug–event combinations mentioned
in spontaneous reports. Disproportionality analysis methods differ in statistical adjustments for low
numbers, and their assumptions. Two main categories of them are frequentist and Bayesian methods
[4, 11].

With target adverse
event

Without target ad-
verse event

Total

With target drug a b n = a + b
Without target drug c d c + d
Total m = a + c b + d t = a + b + c + d

TABLE 1.4: Contingency table used in disproportionality analysis of spontaneous reporting systems
data.

The relative reporting ratio is the most widely discussed measure for disproportionality analysis
and is defined as the ratio of the observed incidence rate of a drug–event combination to its baseline
expected rate under the assumption that the drug and event occur independently. Both the U.S. Food
and Drug Administration and the World Health Organization use a Bayesian version of the relative
reporting ratio as a basis for monitoring safety signals in their spontaneous reporting systems [11].
Frequentist approaches use one of the measures listed in Table 1.5 to estimate associations and are
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typically accompanied by hypothesis tests of independence. The hypothesis tests are used as an extra
precautionary measure to take into account the sample size used while computing an association.

Measure of association Mathematical definition

Relative reporting ratio (RRR)
t ×a
m×n

Proportional reporting ratio
a× (t −n)

c×n

Reporting odds ratio
a×d
c×b

Information component log2(RRR)

TABLE 1.5: Mathematical definitions of measures of association.

The uncertainty associated with small counts in Bayesian approaches is addressed by shrinking
the measure towards no association by a proportional amount [11]. Among the Bayesian approaches
multi-item gamma Poisson shrinker is a predominant algorithm used in the United States by the
FDA, the United Kingdom, and several pharmaceutical companies. An empirical Bayes geometric
mean is used in this method, which is a centrality measure of the posterior distribution of the true
relative reporting ratio. The World Health Organization uses a similar Bayesian approach, called the
Bayesian Confidence Propagation Neural Network [11]. However, due to lack of a gold standard to
evaluate the performances of these methods, it is accepted that none of them is universally better
than any other. Also, their results differences tend to fade with the increase in the number of reports
of a specific drug–event combination [11].

1.3.2 Multivariate methods
Traditional disproportionality analysis approaches do not properly support the discovery and

analysis of higher-dimensional drug safety phenomena that involve more than one drug or event,
and the confounding issue [4, 11]. Hauben and Bate [62] report the importance and difficulties with
more complex drug safety phenomena detections. Methods that aim to identify signals of adverse
events based on multiple drugs, should be able to detect hidden drug–drug interactions [16].

Confounding is another challenge in these analyses. A confounder is an observed or unobserved
variable that mediates an association between other variables. Many related research publications
have focused on confounding by drug co-administration. In these cases a drug that is frequently co-
prescribed with another drug could be mistakenly associated with an event rather than the correct
one [11]. Several multivariate approaches have been proposed to address these issues. We summa-
rized some of them in this section.

• Disproportionality analysis extensions; This method has been applied mostly to three-
dimensional associations corresponding to drug–drug interactions [63], for which observed-
to-expected ratios are calculated in a similar manner but based on three elements (i.e., drug1–
drug2–event).

• Multivariate logistic regression; Stratification is traditionally used to address confounding;
however, this method is not effective for studying a large number of potential confounders
[64]. Multiple logistic regressions can be a more appropriate approach to deal with confound-
ing. It can estimate the drug–event association by controlling or adjusting for the presence of
other potential confounders [64]. Caster et al. [65] applied Bayesian logistic regression [66]
–which can carry out regression analyses with millions of covariates– to address confounding
in World Health Organization spontaneous reporting system data.
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• Associations rule learning6; This method is well established for discovering relations be-
tween variables in large databases using specific measures of interestingness. Agrawal et al.
[67] introduced association rules for discovering regularities between products in large-scale
transaction data in supermarkets. The Apriori algorithm is usually used to deal with the huge
search space in association rule learning. Rouane-Hacene et al. [68] applied association rule
learning to find association of up to three anti-HIV drugs. Harpaz et al. [69] extended this
method to capture associations of up to six drugs.

• Bi-clustering; Bi-clustering is simultaneous clustering of the data matrix rows and columns
to find sub-matrices that exhibit highly correlated activities [70]. Harpaz et al. [71] used a
bi-clustering algorithm to identify associations between multiple drugs and adverse effects.

• Network analysis; Another approach to adverse event identification from spontaneous re-
porting systems are based on constructions and analysis of network structures. Ball and Botsis
[72] constructed a network for vaccine adverse events where nodes in the network correspond
to vaccines and reported events. They observed this network is scale-free7 and proposed using
hubs in this network to identify patterns of adverse events caused by HPV4 vaccines. Zhang
et al. [73] also constructed bipartite networks of vaccines, diseases and genes to analyze vac-
cine adverse event data.

In any of the above methods, there are several factors that one should consider in analysis of
spontaneous reporting systems data. Amalberti et al. [21] identified examples of incorrect conclu-
sion due to the fact that the studies were performed with simplistic assumptions and only looking
for the cause in the researchers own specialty. They also identified that many studies consider a
short time-frame and thus miss many adverse events, and proposed three different time frames to
study the effect of adverse events. They also highlighted that many studies of adverse events are
influenced by emotions and media coverage and are often insurance-driven, while the ones that may
have an impact on a larger population are left without much attention.

1.4 Electronic Health Records
As mentioned in the previous section there are multiple limitations with spontaneous reports,

that encouraged the use of several other sources to identify drug adverse events signals. One source
is electronic health records and administrative claims data. Electronic health records have some
advantages when compared to spontaneous reporting systems data. They are captured during the
usual course of care and contain more detailed medical data, such as patients clinical history, and the
timing of symptom development and medication administration. There is also no need to estimate
the reporting frequency as events are captured as part of the standard care [61].

Electronic health records are being increasing used throughout the United States, potentially
providing more data [74]. Initiatives like the Observational Medical Outcomes Partnership in the
USA and the Exploring and Understanding Adverse Drug Reactions project in Europe are focusing
on building electronic health records based surveillance systems [13]. The efficacy of electronic
health records to identify adverse drug events was shown by Ramirez et al. [10]. They used abnormal
laboratory signals to identify patients with adverse drug events. Via retrospective studies, Brown
et al. [75] have also shown that the adverse events caused by Vioxx could have been found sooner
based on electronic health records.

6Also referred to as association rule mining.
7A network with power law degree distribution.
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Electronic health records can be categorized into structured coded data and unstructured clinical
notes [4]. ICD8 codes [76], laboratory data and vital measurements [77] are among the structured
coded data that have been used to detect association of drugs and adverse events. Wang et al. [78]
proposed one of the early methods to use unstructured clinical notes to detect drug adverse event
associations. In additional to the challenges with structured coded data, unstructured clinical notes
require methods that can extract relevant information from free text clinical narratives. We discuss
some details of the natural language processing and text mining methods in section 1.6.

Since electronic health records are mainly captured for diagnoses (usually based on billing
codes) and not adverse drug event detection, they often require pre-processing to support analysis.
Health-care providers often use different solutions for documentation and encoding the data. There
are also legal and privacy concerns in accessing patients data causing logistical issues in sharing,
accessing, and storing data.

There is a need for methods that can address confounding in the observational studies. There are
methods to apply disproportionality analysis on electronic health records data, and also methods that
are based on cohort designs, case-control designs, and self-controlled designs [11]. Cohort designs
partition the subject cohorts based on their exposure to the drug, case-control designs divide them
based on the event, and self-controlled designs compare the same subjects before and after they
were exposed to the drug.

Electronic health records can also be used to detect more complex signals for drug–drug in-
teractions. Iyer et al. [13] proposed adjusted disproportionality ratios to identify significant drug-
drug-event associations among 1165 drugs and 14 adverse events. They published the database of
population event rates among patients on drug combinations based on the electronic health records
corpus from Stanford Translational Research Integrated Database Environment. Their method’s
overall steps include:

1. They first annotated the clinical text, extracting drugs and events of interest, which
focused on 14 adverse events.

2. They then constructed 2×2 contingency table based on cohort design, where the
exposed group are patients who have taken both drugs, and the comparison group
include patients who have taken one or none of the drugs.

3. Then they computed the population event rate for patients who have taken both
drugs.

They found that the interaction between Amiodarone and Haloperidol known to cause QT pro-
longation could have been detected based on signals from Stanford Translational Research Inte-
grated Database Environment data as early as 2007. The FDA Adverse Event Reporting System
started receiving reports for this interaction in 2009 [13]. They also showed that signals from elec-
tronic health records can be as useful as signals from spontaneous reporting systems. However, most
methods do not indicate causality, instead they only show correlation and are means to provide early
warning to focus more extensive investigations.

Harpaz et al. [26] proposed an empirical Bayes model to combine signals extracted from elec-
tronic health records and spontaneous reports. They showed an average 40% improvement by com-
bining results from these sources in comparison to using each source independently.

8International Classification of Diseases.
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1.5 Patient Generated Data on the Internet
Patient generated data such as web search logs, social networks, and health-care related forums

are resources that contain medical related information on the Internet. Surveys suggest about 60-
70% of adults search for health and medical information online, and about 80% of online health
inquiries start at a search engine [79]. Table 1.6 summarizes some of the resources that contain
patient generated medical data.

Several systems that make medical predictions based on these types of data have received re-
cent attention from research community that either support or question their findings. For example,
Google Flu trends [80] that uses aggregated Google search data to estimate flu activity has been
both perceived positively [81] and also criticized [82] by the research community.

Name URL Purpose
Ask a Patient www.askapatient.com To share and compare medica-

tion experiences.
DailyStrength www.dailystrength.org Support group forum to dis-

cuss medical conditions.
PatientsLikeMe www.patientslikeme.com To find patients with simi-

lar condition and share experi-
ences.

TABLE 1.6: Online resources with patient generated medical information.

Although the information provided by patients may be inaccurate or even questionable, such
forums can provide valuable supplementary information on drug effectiveness and side effects be-
cause they cover large and diverse populations and contain unsolicited, uncensored data directly
from patients [11]. However, extracting such information is very challenging and requires statistical
and linguistic models to interpret conversational styles, correct spelling and grammatical errors, and
separate gossip from real experiences.

Noise, influence of experiences, different bias factors, profession, and online content exposure
are some examples that can contaminate the search engine log signals. There could be several rea-
sons for users to search for symptoms and medications; for example, medical professionals could
search for these information regularly [79].

Leaman et al. [83] extracted information from DailyStrength posts and found high correlation
between user reported drug adverse events and the documented cases. White et al. [84] showed that
interaction of Paroxetine and Pravastatin which can cause hyperglycemia could have been detected
based on web search logs prior to its identification. In another example, Freifeld et al. [85] showed
the efficacy of the Twitter data for pharmacovigilance.

White et al. [79] combined the signals from search engines logs of 80 million users over 18
months with the FDA’s adverse event reporting system, and showed that the detection performance
can be improved by 19%. In their analysis they applied the following steps to detect signals form
the search queries:

1. They performed entity recognition and resolution to map synonym search terms
into a unified representation for drugs, conditions and symptoms.

2. They excluded a portion (approximately 9%) of users from their analysis, based
on the frequency of their queries (for internet bots) and the time they first started
submitting medical queries (for health-care professionals).
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3. For a drug of interest, they considered a surveillance window around the first
occurrence of a query (defined as t0).

4. To exclude exploratory searches and the queries influenced by reading the online
articles related to the drug they defined an exclusion window around t0.

5. They defined and computed a measure for a self-controlled study design called
query rate ratio (QRR) as the ratio of number of after to before symptom or con-
dition related queries around t0 to indicate the association of drug-symptom con-
dition.

1.6 Biomedical Literature
Natural language processing and text mining can be used for knowledge representation and hy-

pothesis generation based on biomedical literature. For example, Shetty and Dalal [86] used research
articles index on Pubmed9 that mention specific drugs and adverse events to rank potential drugs
adverse event relations. They applied several preprocessing steps and disproportionality analysis for
their approach and showed that the association between Vioxx and myocardial infarction could have
been found sooner. Haerian et al. [61] used the Medical Language Extraction and Encoding Sys-
tem (MedLEE) [87], a clinical NLP system developed at Columbia University, to analyze electronic
health record and detect drug adverse events. MedLEE has also been used for automated knowledge
acquisition from text, extracting adverse events from health records, and quality of care assessment
[88, 89, 90].

Text mining could be beneficial to the pharmaceutical industry in several ways; For example,
it could facilitate literature reviewing for medical professionals, and identify and extract relevant
information. Such information can be extracted from unstructured clinical notes, like those in elec-
tronic health records and also biomedical research articles [91, 92]. However, biomedical literature
is a very rich resource of information that can be used for discoveries beyond drug adverse events
predictions. Mining the biomedical literature has been successfully used to discover new relation-
ships among genes, biological pathways, diseases, or even for drug repurposing [93, 11].

Information extraction from a huge volume of available research literature is a challenging task.
For example, Thorn et al. [94] highlight this problem as one of their main challenges in maintaining
pharmacogenomics knowledge base (PharmGKB). They have developed a natural language pro-
cessing framework to streamline the identification of articles of interest and speed up the annotation
process [95]. Due to these challenges biomedical literature mining has increasingly become a fo-
cus of active research in recent years. BioCreative10 (Critical Assessment of Information Extraction
systems in Biology) is an international community-wide effort that evaluates text mining and in-
formation extraction systems applied to the biomedical domain. BioNLP11 is organizing events to
support application of natural language processing on biomedical literature. There is a considerable
amount of research literature and methods addressing the biomedical text mining challenges which
we could not summarize in this section. Demner-Fushman et al. [96] and Krallinger et al. [97] pro-
vided a survey of biomedical and clinical text mining research, and Hahn et al. [93] summarized the
recent advanced in text mining for pharmacogenomics.

In this section we briefly highlight some of the main related tasks and resources to pharma-
ceutical discoveries and pharmacogenomics. Pharmacogenomics publications span the intersection

9www.ncbi.nlm.nih.gov/pubmed
10http://www.biocreative.org
11http://bionlp.org



Data Analytics for Pharmaceutical Discoveries 17

of research in genotypes, phenotypes and pharmacology. Some of the applications of pharmacoge-
nomics text mining includes guiding human database curation, discovering interactions and poten-
tial cause–effect phenomena such as candidate gene ranking, drug–drug interaction and adverse
drug interaction prediction, and drug repurposing [93]. An interesting application of biomedical
text mining, pioneered by Don Swanson, is literature-based discovery and hypothesis generation
[98], where the goal is to find implicit and novel information relating entities that are not explicitly
spelled out in the underlying documents. Some of main tasks in biomedical literature mining in-
cludes corpus development, entity recognition and resolutions, relation extraction, and creation and
use of ontologies.

There are three main types of entities of interest for recognition and resolutions in biomed-
ical literature for pharmacogenomics; genotypes, phenotypes, and pharmacological entities. The
most important genotype entity types are genes and proteins. Phenotype entities mainly include
pathological phenomena and diseases in particular, as well as their anatomical sites, conditions and
treatment. Pharmacological entities are drugs and other chemicals that are functionally important in
treating or causing medically significant phenotypes in the course of treatments and therapies. One
of challenges in biomedical literature mining is entity recognition and resolution. Several databases
are used as canonical resources for entity resolution in biomedical literature, some of which are
highlighted in Table 1.7.

Name URL Entities
EntrezGene www.ncbi.nlm.nih.gov/gene genotype
UniProt www.uniprot.org genotype

Medical Subject Headings (MeSH) www.ncbi.nlm.nih.gov/mesh phenotypes,
pharma-
ceutical

Unified Medical Language System
(UMLS)

www.nlm.nih.gov/research/umls phenotypes,
pharma-
ceutical

International Classification of Dis-
eases (ICD-10)

www.who.int/classifications/icd/en phenotypes

Systematized Nomenclature
of Medicine – Clinical Terms
(SNOMED–CT)

www.ihtsdo.org/snomed-ct phenotypes

Medical Dictionary for Regulatory
Activities (MedDRA)

www.meddramsso.com phenotypes

DrugBank www.drugbank.ca pharmaceutical
Chemical Entities of Biological Inter-
est (ChEBI)

www.ebi.ac.uk/chebi pharmaceutical

KEGG www.genome.jp/kegg pharmaceutical,
genotype

Human Metabolome Database
(HMDB)

www.hmdb.ca pharmaceutical,
genotype

ChemIDplus chem.sis.nlm.nih.gov/chemidplus pharmaceutical

TABLE 1.7: Canonical databases for entity resolution.

More complex tasks in biomedical text mining deal with finding relations between entities.
Genotype–phenotype relation extraction aims to identify which genotypes can play a role in which
diseases [97]. Genotype–pharmaceutical relation extraction focuses on personalized medicine and
possibility of tailoring drugs given a genetic context [99]. Phenotype–pharmaceutical relation
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extraction mostly concentrate on finding drug side effect and associated adverse effects [100].
Genotype–phenotype–pharmaceutical relations are more complex relations that aim to find genetic
information and relate them to phenotype–pharmaceutical level. Typically, studies in this area com-
bine text mining with other sources of information, to derive better conclusions [101].

1.7 Summary and Future Challenges
Data mining and data analytics are becoming more widely used in pharmaceutical discoveries.

From proposing new hypotheses to detecting adverse event patterns, data mining methods are used
to analyze chemical and biological data, spontaneous reports, electronic health records, biomedical
literature, and most recently patient generated Internet data. But only in recent years new opportu-
nities and interests have emerged to analyze data that have not been traditionally available and used
for pharmaceutical discoveries.

These methods can advance pharmaceutical discoveries by potentially allowing for personal-
ized medicine, drug re-purposing, more effective drug design and developments, and also active
and proactive paradigms of surveillance. These new horizons also introduce new interesting chal-
lenges that should be addressed by the research community. There is a need for methods that can
better address confounding and detect multi-drug interactions and adverse events related to them.
Combining different sources of information to provide better predictions and hypotheses is also an
interesting area of research.

Most tasks and data in pharmaceutical domain that data mining algorithms can be effective on,
lack negative samples. For example, in drug-target interaction prediction, while positive interac-
tions are well documented, a lack of interactions is not properly captured in the commonly used
databases. Hence, it is not really known whether the absence of interaction data is due to a lack
of real interaction, or it is due to the fact that such interaction has not been properly studied yet.
In addition to challenges for standard supervised learning in data mining methods, this limitation
introduces problems for standard evaluations.

In addition, further research is needed to understand the relative benefits and limitations of each
data source and effectively integrate information from multiple data sources, including biomedical
literature, biological/chemical data, user generated data on the internet for pharmaceutical discover-
ies and pharmacovigilance. The application and development of data mining and machine learning
methods to facilitate and help advance pharmaceutical discoveries, has great potentials and need to
be further investigated.
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